综述与评述

水分再循环计算模型的研究进展及其展望

  • 李修仓 ,
  • 姜彤 ,
  • 吴萍
展开
  • 1.中国气象局 国家气候中心/气候研究开放实验室,北京 100081
    2.南京信息工程大学气象灾害 预报预警与评估协同创新中心/灾害风险管理学院/地理科学学院,江苏 南京 210044
李修仓(1982-),男,山东郓城人,高级工程师,主要从事气候变化与水循环研究. E-mail:lixiucang@cma.gov.cn

收稿日期: 2020-07-30

  修回日期: 2020-09-22

  网络出版日期: 2020-11-30

基金资助

国家重点研发计划项目“全球气候系统能量与水循环时空演变及其成因辨识”(2017YFA0603701);第二次青藏高原综合科学考察研究专题“亚洲水塔变化及其广域效应”(2019QZKK0208)

Progress and Prospect of the Moisture Recycling Models

  • Xiucang Li ,
  • Tong Jiang ,
  • Ping Wu
Expand
  • 1.National Climate Center/Laboratory for Climate Studies,China Meteorological Administration,Beijing 100081,China
    2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Institute for Disaster Risk Management/School of Geographical Sciences,Nanjing University of Information Science & Technology,Nanjing 210044,China
Li Xiucang (1982-), male, Yuncheng County, Shandong Province, Senior Engineer. Research areas include climate change and water cycle. E-mail:lixiucang@cma.gov.cn

Received date: 2020-07-30

  Revised date: 2020-09-22

  Online published: 2020-11-30

Supported by

the National Key Research and Development Program of China “Spatiotemporal evolution of energy and water cycle in global climate system”(2017YFA0603701);The Second Tibetan Plateau Scientific Expedition and Research Program “The change of Asian water tower and its wide effect”(2019QZKK0208)

摘要

水分再循环是蒸发的水汽以降水的形式再次返回本地的过程,是水文大循环的重要组成部分。回顾了水分再循环基础理论的发展过程,系统地梳理了国内外3类水分再循环研究方法,分析了不同箱式分析模型边界条件和假设条件的异同,对比了水汽追踪和物理示踪等方法的优点及局限性。当前国内外水分再循环的研究存在尺度依赖性高、全球尺度研究较少等突出问题,箱式分析再循环模型有待深入比较或优化改进,应发展相对共识的等尺度计算方案;此外,水分再循环的研究应与全球水文大循环的研究相结合,包括计算或补全全球水量平衡分量,同时还应考虑水循环的动态变化问题。

本文引用格式

李修仓 , 姜彤 , 吴萍 . 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020 , 35(10) : 1029 -1040 . DOI: 10.11867/j.issn.1001-8166.2020.085

Abstract

As an important part of the hydrological cycle, moisture recycling is a process in which evaporated water vapor returns to the local area again in the form of precipitation. In this paper, the development process of the basic theory of moisture recycling was reviewed. Three types of moisture recycling research methods from the domestic and foreign research were investigated systematically. The similarities and differences of the boundary conditions and assumptions of different box analysis models were analyzed. The advantages and limitations of water vapor tracer method and isotopic tracer method were compared. In the current domestic and international moisture recycling research, scale-dependence of the results and fewer studies on global scale are still outstanding problems. The box analysis recycling model needs to be optimized and improved. Relatively consensus equal-scale calculation schemes should be developed. In addition, moisture recycling studies should be combined with the studies of the global water cycle, in order to supplement relevant components of global water balance. Dynamic changes of the water cycle should also be considered the changes of moisture recycling.

参考文献

1 Lu Guihua, He Hai. View of global hydrological cycle[J]. Advances in Water Science, 2006, 17(3): 419-424.
1 陆桂华,何海.全球水循环研究进展[J].水科学进展, 2006, 17(3):419-424.
2 Zhang Liping, Chen Xiaofeng, Zhao Zhipeng, et al. Progess in study of climate change impacts on hydrology and water resources[J]. Progress in Geography, 2008, 27(3): 60-67.
2 张利平,陈小凤, 赵志鹏,等.气候变化对水文水资源影响的研究进展[J].地理科学进展, 2008, 27(3): 60-67.
3 Starr V P, Peixoto J P. On the global balance of water vapor and the hydrology of deserts[J]. Tellus, 1958, 10(2): 188-194.
4 Rasmusson E M. Atmospheric water vapor transport and the water balance of North America: Part I. Characteristics of the water vapor flux field[J]. Monthly Weather Review, 1967, 95(7): 403-426.
5 Rasmusson E M. Atmospheric water vapor transport and the water balance of North America: Part II. Large-scale water balance investigations[J]. Monthly Weather Review, 1968, 96(10): 720-734.
6 Horton R E. Hydrologic interrelations between lands and oceans[J]. EOS, Transactions American Geophysical Union, 1943, 24(2): 753-764.
7 McDonald J E. The evaporation precipitation fallacy[J]. Weather, 1962, 17(5): 168-177.
8 Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4): 436-468.
9 Budyko M I. Climate and Life[M]. New York and London: Academic Press, 1974.
10 Trenberth K E. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change[J]. Climatic Change, 1998, 39(4): 667-694.
11 Molion L. A Climatonomic Study of the Energy and Moisture Fluxes of the Amazonas Basin with Considerations of Deforestation Effects[D]. Madison:University of Wisconsin, 1975.
12 Lettau H, Lettau K, Molion L C B. Amazonia's hydrologic cycle and the role of atmospheric recycling in assessing deforestation effects[J]. Monthly Weather Review, 1979, 107(3): 227-238.
13 Brubaker K L, Entekhabi D, Eagleson P S. Estimation of continental precipitation recycling[J]. Journal of Climate, 1993, 6(6): 1 077-1 089.
14 Burde G I, Zangvil A, Lamb P J. Estimating the role of local evaporation in precipitation for a two-dimensional region[J]. Journal of Climate, 1996, 9(6): 1 328-1 338.
15 Eltahir E A B, Bras R L. Precipitation recycling in the Amazon basin[J]. Quarterly Journal of the Royal Meteorological Society, 1994, 120(518): 861-880.
16 Gat J R, Bowser C J, Kendall C. The contribution of evaporation from the Great Lakes to the continental atmosphere: Estimate based on stable isotope data[J]. Geophysical Research Letters, 1994, 21(7): 557-560.
17 Craig H, Gordon L. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere[M]//Stable Isotopes in Oceanographic Studies and Paleotemperatures. Spoleto, 1965.
18 Joussaume S, Sadourny R, Jouzel J. A general circulation model of water isotope cycles in the atmosphere[J]. Nature, 1984, 311(5 981): 24-29.
19 Cole J E, Rind D, Webb R S, et al. Climatic controls on interannual variability of precipitation δ18O Simulated influence of temperature, precipitation amount, and vapor source region[J]. Journal of Geophysical Research Atmospheres, 1999, 104(D12): 14 223-14 235.
20 Risi C, Bony S, Vimeux F, et al. Understanding the Sahelian water budget through the isotopic composition of water vapor and precipitation[J]. Journal of Geophysical Research: Atmospheres, 2010, 115: D24110. DOI:10.1029/2010JD014690.
21 Burde G I, Zangvil A. The estimation of regional precipitation recycling. Part I: Review of recycling models[J]. Journal of Climate, 2001, 14(12): 2 497-2 508.
22 Dominguez F, Kumar P, Liang X Z, et al. Impact of atmospheric moisture storage on precipitation recycling[J]. Journal of Climate, 2006, 19(8): 1 513-1 530.
23 van der Ent R J, Savenije H H G, Schaefli B, et al. Origin and fate of atmospheric moisture over continents[J]. Water Resources Research, 2010, 46(9): W09525. DOI:10.1029/2010WR009127.
24 Numaguti A. Origin and recycling processes of precipitating water over the Eurasian continuent: Experiments usting an atmospheric general circulation model[J]. Journal of Geophysical Research, 1999,104(D2): 1 957-1 972.
25 Bosilovich M G, Schubert S D. Water vapor tracers as diagnostics of the regional hydrologic cycle[J]. Journal of Hydrometeorology, 2002, 3(2): 149-165.
26 Sodemann H, Wernli H, Schwierz C. Sources of water vapour contributing to the Elbe flood in August 2002—A tagging study in a mesoscale model[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135(638): 205-223.
27 Knoche H R, Kunstmann H. Tracking atmospheric water pathways by direct evaporation tagging: A case study for West Africa[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(22): 12 345-12 358.
28 Dominguez F, Miguez-Macho G, Hu H. WRF with water vapor tracers: A study of moisture sources for the North American monsoon[J]. Journal of Hydrometeorology, 2016, 17(7): 1 915-1 927.
29 Peng H, Mayer B, Norman A L, et al. Modelling of hydrogen and oxygen isotope compositions for local precipitation[J]. Tellus B: Chemical and Physical Meteorology, 2005, 57(4): 273-282.
30 Froehlich K, Kralik M, Papesch W, et al. Deuterium excess in precipitation of Alpine regions-moisture recycling[J]. Isotopes in Environmental and Health Studies, 2008, 44(1): 61-70.
31 Peng T R, Liu K K, Wang C H, et al. A water isotope approach to assessing moisture recycling in the island‐based precipitation of Taiwan: A case study in the western Pacific[J]. Water Resources Research, 2011, 47(8): W08507. DOI:10.1029/2010WR009890.
32 Yi Lan, Tao Shiyan. Construction and analysis of a precipitation recycling model[J]. Advances in Water Science, 1997, 8(3): 205-211.
32 伊兰, 陶诗言. 一个降水再循环模型的建立及分析[J]. 水科学进展, 1997, 8(3): 205-211.
33 Burde G I, Zangvil A. The estimation of regional precipitation recycling. Part II: A new recycling model[J]. Journal of Climate, 2001, 14(12): 2 509-2 527.
34 Koster R, Jouzel J, Suozzo R, et al. Global sources of local precipitation as determined by the NASA/GISS GCM[J]. Geophysical Research Letters, 1986, 13(2): 121-124.
35 Bosilovich M G, Schubert S D. Water vapor tracers as diagnostics of the regional hydrologic cycle[J]. Journal of Hydrometeorology, 2002, 3(2): 149-165.
36 Gimeno L, Stohl A, Trigo R M, et al. Oceanic and terrestrial sources of continental precipitation[J]. Reviews of Geophysics, 2012, 50(4): RG4003. DOI:10.1029/2012RG000389.
37 Sessions A L. Factors controlling the deuterium contents of sedimentary hydrocarbons[J]. Organic Geochemistry, 2016, 96: 43-64.
38 Salati E, Dall'olio A, Matsui E, et al. Recycling of water in the Amazon basin: An isotopic study[J]. Water Resources Research, 1979, 15(5): 1 250-1 258.
39 Ingraham N L, Taylor B E. Light stable isotope systematics of large‐scale hydrologic regimes in California and Nevada[J]. Water Resources Research, 1991, 27(1): 77-90.
40 Gat J R, Matsui E. Atmospheric water balance in the Amazon Basin: An isotopic evapotranspiration model[J]. Journal of Geophysical Research: Atmospheres, 1991, 96(D7): 13 179-13 188.
41 Ogunkoya O O, Jenkins A. Analysis of storm hydrograph and flow pathways using a three-component hydrograph separation model[J]. Journal of Hydrology, 1993, 142(1/4): 71-88.
42 Phillips D L, Gregg J W. Uncertainty in source partitioning using stable isotopes[J]. Oecologia, 2001, 127: 171-179.
43 Bosilovich M G, Chern J D. Simulation of water sources and precipitation recycling for the MacKenzie, Mississippi, and Amazon River basins[J]. Journal of Hydrometeorology, 2006, 7(3): 312-329.
44 Bisselink B, Dolman A J. Recycling of moisture in Europe: Contribution of evaporation to variability in very wet and dry years[J]. Hydrology and Earth System Sciences, 2009, 13(9): 1 685-1 697.
45 Pokam W M, Djiotang L A T, Mkankam F K. Atmospheric water vapor transport and recycling in Equatorial Central Africa through NCEP/NCAR reanalysis data[J]. Climate Dynamics, 2012, 38(9/10): 1 715-1 729.
46 Kang Hongwen, Gu Xiangqian, Fu Xiang, et al. Precipitation recycling over the Northern China[J]. Journal of Applied Meteorological Science, 2005, 16(2): 139-147.
46 康红文, 谷湘潜, 付翔, 等. 我国北方地区降水再循环率的初步评估[J]. 应用气象学报, 2005, 16(2): 139-147.
47 Wu P, Ding Y, Liu Y, et al. The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over Northwest China[J]. International Journal of Climatology, 2019, 39(14): 5 241-5 255.
48 Kang Hongwen, Gu Xiangqian, Zhu Congwen, et al. Precipitation recycling in southern and central China[J]. Chinese Journal of Atmospheric Sciences, 2004, 28(6): 892-900.
48 康红文, 谷湘潜, 祝从文, 等. 我国中部和南部地区降水再循环率评估[J]. 大气科学, 2004, 28(6): 892-900.
49 Goessling H F, Reick C H. What do moisture recycling estimates tell us? Exploring the extreme case of non-evaporating continents[J]. Hydrology and Earth System Sciences, 2011, 15: 3 217-3 235.
50 Risi C, Noone D, Frankenberg C, et al. Role of continental recycling in intraseasonal variations of continental moisture as deduced from model simulations and water vapor isotopic measurements[J]. Water Resources Research, 2013, 49(7): 4 136-4 156.
51 Chahine M T. The hydrological cycle and its influence on climate[J]. Nature, 1992, 359(6 394): 373-380.
52 Oki T, Kanae S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5 790): 1 068-1 072.
53 Trenberth K E, Smith L, Qian T, et al. Estimates of the global water budget and its annual cycle using observational and model data[J]. Journal of Hydrometeorology, 2007, 8(4): 758-769.
54 Rodell M, Beaudoing H K, L'Ecuyer T S, et al. The observed state of the water cycle in the early twenty-first century[J]. Journal of Climate, 2015, 28(21): 8 289-8 318.
55 Trenberth K E, Fasullo J, Smith L. Trends and variability in column-integrated atmospheric water vapor[J]. Climate Dynamics, 2005, 24(7/8): 741-758.
56 Ohmura A, Wild M. Is the hydrological cycle accelerating?[J]. Science, 2002, 298(5 597): 1 345-1 346.
57 Schneider U, Becker A, Finger P, et al. GPCC's new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle[J]. Theoretical and Applied Climatology, 2014, 115(1/2): 15-40.
58 Schlesinger W H, Jasechko S. Transpiration in the global water cycle[J]. Agricultural and Forest Meteorology, 2014, 189: 115-117.
59 Dai A, Qian T, Trenberth K E, et al. Changes in continental freshwater discharge from 1948 to 2004[J]. Journal of Climate, 2009, 22(10): 2 773-2 792.
60 Sheffield J, Wood E F. Characteristics of global and regional drought, 1950-2000: Analysis of soil moisture data from off‐line simulation of the terrestrial hydrologic cycle[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D17115). DOI:10.1029/2006JD008288.
61 Huntington T G. Evidence for intensification of the global water cycle: Review and synthesis[J]. Journal of Hydrology, 2006, 319(1/4): 83-95.
文章导航

/