中国主要河流输送陆源碳的同位素特征及影响因素
收稿日期: 2020-08-09
修回日期: 2020-09-02
网络出版日期: 2020-10-28
基金资助
国家自然科学基金项目“重新评估河流输入陆源有机碳对海洋碳循环的贡献和影响”(41776082);中央高校基本科研业务费专项“C3、C4植物生物降解对水体和沉积物间隙水溶解无机碳同位素值的影响”(201861017)
Carbon Isotopic Constrains on the Sources and Controls of the Terrestrial Carbon Transported in the Four Large Rivers in China
Received date: 2020-08-09
Revised date: 2020-09-02
Online published: 2020-10-28
Supported by
the National Natural Science Foundation of China “Reassessing the contribution and impact of river input terrigenous organic carbon on marine carbon cycle”(41776082);The Fundamental Research Funds for the Central Universities "The impact of C3 and C4 vegetation biodegradation on dissolved inorganic carbon isotopes in aquatic systems and sediment pore water"(201861017)
长江、黄河、珠江和黑龙江是我国的4条主要大型河流,其淡水和陆源物质的输送对边缘海的物理、生物和地球化学过程具有重要影响。通过碳同位素(13C和14C)与浓度相结合的方法,研究了4条河流输送陆源有机碳(POC和DOC)和无机碳(PIC和DIC)的同位素特征和通量,通过同位素端元模型对各河流输送陆源有机和无机碳的来源做了定量计算并与世界主要河流进行了比较。长江、黄河和珠江输送的DIC和DOC具有千年尺度的14C年龄,高于世界其他大河流,主要受岩石风化以及人类活动的影响。黑龙江流域输送的DIC、DOC及POC具有相对年轻的14C年龄,这表明其河流碳组分主要受陆源植被有机质降解影响。该研究对认识我国主要河流输送陆源碳的特征、来源和控制因素及对边缘海碳循环的影响具有实质意义。
单森 , 齐远志 , 罗春乐 , 付文静 , 薛跃君 , 王旭晨 . 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020 , 35(9) : 948 -961 . DOI: 10.11867/j.issn.1001-8166.2020.078
The Changjiang, Huanghe, Zhujiang and Heilongjiang are the four largest rivers in China and they transport large amount of fresh water and terrigenous materials, including both inorganic and organic carbon into the ocean. The sources of the terrestrial carbon transported in the four rivers, however, have not been well constrained and compared. In this study, we used carbon isotopes (13C and 14C) combined with concentration measurements to investigate and compare the sources and fluxes of Dissolved Inorganic Carbon (DIC), Particulate Inorganic Carbon (PIC), Dissolved Organic Carbon (DOC) and Particulate Organic Carbon (POC) in the four rivers. The contributions of the potential sources to both DIC and DOC were quantitatively calculated using a dual isotope and three end member model. The results showed that the concentrations and isotope characteristics of the carbon pools in the river depended largely on the geological setting, surrounding environment and the anthropogenic influence of the drainage basins. Compared with other large rivers in the world, the concentrations of DIC in the Changjiang, Huanghe and Zhujiang were higher, but the DIC fluxes in the Huanghe and Zhujiang were lower. The DOC concentrations in the Heilongjiang River were higher and lower in the other three rivers compared with the average value of the world largest 25 rivers. The Changjiang, Huanghe and Zhujiang all transport millennia aged carbon. The old riverine DIC reflects the influence of chemical weathering of carbonate rocks and the old DOC reflects influence mainly from pre-aged soil OC. These ancient terrestrial carbon discharged by the rivers could have significant effects on the carbon cycle and ecosystems in the China's marginal seas.
Key words: Rivers; Organic carbon; Inorganic carbon; Carbon flux; Carbon isotope
1 | Bianchi T S, Allison M A. Large-river delta-front estuaries as natural "recorders" of global environmental change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(20): 8 085-8 092. |
2 | Blair N E, Aller R C. The fate of terrestrial organic carbon in the marine environment[J]. Annual Review of Marine Science, 2012, 4(1): 401-423. |
3 | Dai A G, Qian T T, Trenberth K E, et al. Changes in continental freshwater discharge from 1948 to 2004[J]. Journal of Climate, 2009, 22(10): 2 773-2 792. |
4 | Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1): 1-21. |
5 | Bauer J E, Cai W J, Raymond P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7 478): 61-70. |
6 | Cai W-J. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration?[J]. Annual Review of Marine Science, 2011, 3(1): 123-145. |
7 | Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1): 171-184. |
8 | Beaulieu E, Goddéris Y, Donnadieu Y, et al. High sensitivity of the continental-weathering carbon dioxide sink to future climate change[J]. Nature Climate Change, 2012, 2(5): 346-349. |
9 | Bianchi T S. The role of terrestrially derived organic carbon in the coastal ocean: A changing paradigm and the priming effect[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(49): 19 473-19 481. |
10 | Dosseto A. Chemical weathering (U-series)[C]//Encyclopedia of Scientific Dating Methods. Dordrecht: Springer Netherlands, 2015: 152-169. |
11 | Kump L R, Brantley S L, Arthur M A. Chemical weathering, atmospheric CO2, and climate[J]. Annual Review of Earth & Planetary Sciences, 2000, 28(1): 611-667. |
12 | Wang X C, Chen R F, Gardner G B. Sources and transport of dissolved and particulate organic carbon in the Mississippi River estuary and adjacent coastal waters of the northern Gulf of Mexico[J]. Marine Chemistry, 2004, 89(1/4): 241-256. |
13 | Wang X C, Ma H Q, Li R H, et al. Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers: The Yellow River and Changjiang (Yangtze) River[J]. Global Biogeochemical Cycles, 2012, 26(2): GB2025. |
14 | Wu Y, Zhang J, Liu S M, et al. Sources and distribution of carbon within the Yangtze River system[J]. Estuarine, Coastal and Shelf Science, 2007, 71(1/2): 13-25. |
15 | Wu Y, Bao H, Yu H, et al. Temporal variability of particulate organic carbon in the lower Changjiang (Yangtze River) in the post-Three Gorges Dam period: Links to anthropogenic and climate impacts[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120: 2 194-2 211. |
16 | Xue Y J, Zou L, Ge T T, et al. Mobilization and export of millennial-aged organic carbon by the Yellow River[J]. Limnology and Oceanography, 2017, 62(S1): S95-S111. |
17 | Schuur E A G, Druffel E, Trumbore S E. Radiocarbon and Climate Change[M]. Cham: Springer International Publishing, 2016. DOI: 10.1007/978-3-319-25643-6. |
18 | Armstrong A. Riverine carbon unravelled[J]. Nature Geoscience, 2012, 5(10): 684-684. |
19 | Galy V, Beyssac O, France-Lanord C, et al. Recycling of graphite during Himalayan erosion: A geological stabilization of carbon in the crust[J]. Science, 2008, 322(5 903): 943-945. |
20 | Marwick T R, Tamooh F, Teodoru C R, et al. The age of river-transported carbon: A global perspective[J]. Global Biogeochemical Cycles, 2015, 29(2): 122-137. |
21 | Mayorga E, Aufdenkampe A K, Masiello C A, et al. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers[J]. Nature, 2005, 436(7 050): 538-541. |
22 | Faurescu I, Varlam C, Faurescu D, et al. Underground water dating and age corrections using radiocarbon[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306(1): 263-269. |
23 | Gaillardet J, Dupre B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1/4): 3-30. |
24 | Goldsmith S T, Carey A E, Johnson B M, et al. Stream geochemistry, chemical weathering and CO2 consumption potential of andesitic terrains, Dominica, Lesser Antilles[J]. Geochimica et Cosmochimica Acta, 2010, 74(1): 85-103. |
25 | Richey J E, Hedges J I, Devol A H, et al. Biogeochemistry of carbon in the Amazon River[J]. Limnology and Oceanography, 1990, 35(2): 352-371. |
26 | Cai W-J, Guo X H, Chen C-T A, et al. A comparative overview of weathering intensity and HCO3- flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang (Pearl) and Mississippi Rivers[J]. Continental Shelf Research, 2008, 28(12): 1 538-1 549. |
27 | Wu W H, Yang J D, Xu S J, et al. Geochemistry of the headwaters of the Yangtze River, Tongtian He and Jinsha Jiang: Silicate weathering and CO2 consumption[J]. Applied Geochemistry, 2008, 23(12): 3 712-3 727. |
28 | Zhang L J, Xue M, Wang M, et al. The spatiotemporal distribution of dissolved inorganic and organic carbon in the main stem of the Changjiang (Yangtze) River and the effect of the Three Gorges Reservoir[J]. Journal of Geophysical Research: Biogeosciences, 2014, 119(5): 741-757. |
29 | Wang Xuchen, Dai Minhan. The application naturally occurred radiocarbon (14C) in marine organic geochemistry studies[J]. Advance in Earth Sciences, 2002, 17(3): 348-354. |
29 | 王旭晨, 戴民汉. 天然放射性碳同位素在海洋有机地球化学中的应用[J]. 地球科学进展, 2002, 17(3): 348-354. |
30 | Bao R, McIntyre C, Zhao M, et al. Widespread dispersal and aging of organic carbon in shallow marginal seas[J]. Geology, 2016, 44(10): 791-794. |
31 | Raymond P A, Bauer J E. Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: A review and synthesis[J]. Organic Geochemistry, 2001, 32(4): 469-485. |
32 | Raymond P A, Hartmann J, Lauerwald R, et al. Global carbon dioxide emissions from inland waters[J]. Nature, 2013, 503(7 476): 355-359. |
33 | Butman D E, Wilson H F, Barnes R T, et al. Increased mobilization of aged carbon to rivers by human disturbance[J]. Nature Geoscience, 2015, 8(2): 112-116. |
34 | Amon R M W, Rinehart A J, Duan S, et al. Dissolved organic matter sources in large Arctic rivers[J]. Geochimica et Cosmochimica Acta, 2012, 94: 217-237. |
35 | Benner R, Benitez-Nelson B, Kaiser K, et al. Export of young terrigenous dissolved organic carbon from rivers to the Arctic Ocean[J]. Geophysical Research Letters, 2004, 31(5): 179-211. |
36 | Raymond P A, McClelland J W, Holmes R M, et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers[J]. Global Biogeochemical Cycles, 2007, 21(4): GB4011. |
37 | Raymond P A, Bauer J E, Caraco N F, et al. Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers[J]. Marine Chemistry, 2004, 92(1/4): 353-366. |
38 | Sickman J O, DiGiorgio C L, Lee Davisson M, et al. Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin, California[J]. Biogeochemistry, 2010, 99(1): 79-96. |
39 | Wang X C, Luo C L, Ge T T, et al. Controls on the sources and cycling of dissolved inorganic carbon in the Changjiang and Huanghe River estuaries, China: 14C and 13C studies[J]. Limnology and Oceanography, 2016, 61(4): 1 358-1 374. |
40 | Xu Qianqing. Water Conservancy Encyclopedia [M]. 2nd ed. Beijing: China Water & Power Press, 2006. |
40 | 徐乾清. 中国水利百科全书[M]. 第2版. 北京: 中国水利水电出版社, 2006. |
41 | Ministry of Water Resources of the People's Republic of China. Sediment Bulletin of Chinese Rivers(2018)[M]. Beijing: China Water & Power Press, 2019. |
41 | 中华人民共和国水利部. 中国河流泥沙公报(2018)[M]. 北京: 中国水利水电出版社, 2019. |
42 | McNichol A P, Jones G A, Hutton D L, et al. The rapid preparation of seawater ΣCO2 for radiocarbon analysis at the National Ocean Sciences Ams Facility[J]. Radiocarbon, 1994, 36(2): 237-246. |
43 | Luo Chunle. Carbon Isotopic (13C, 14C) Studies of the Sources, Seasonal Variation and Flux of Inorganic Carbon Transported by the Huanghe River[D]. Qingdao: Ocean University of China, 2017. |
43 | 罗春乐. 碳同位素(13C,14C)方法研究黄河输送无机碳的来源、季节变化及入海通量[D]. 青岛: 中国海洋大学, 2017. |
44 | Xue Y J, Ge T T, Wang X C. An effective method of UV-oxidation of dissolved organic carbon in natural waters for radiocarbon analysis by accelerator mass spectrometry[J]. Journal of Ocean University of China, 2015, 14(6): 989-993. |
45 | Ge T T, Wang X C, Zhang J, et al. Dissolved inorganic radiocarbon in the Northwest Pacific continental margin[J]. Radiocarbon, 2016, 58(3): 517-529. |
46 | Wang X C, Xu C L, Druffel E M, et al. Two black carbon pools transported by the Changjiang and Huanghe Rivers in China[J]. Global Biogeochemical Cycles, 2016, 30(12): 1 778-1 790. |
47 | Masiello C A, Druffel E R M. Carbon isotope geochemistry of the Santa Clara River[J]. Global Biogeochemical Cycles, 2001, 15(2): 407-416. |
48 | Ishikawa N F, Tayasu I, Yamane M, et al. Sources of dissolved inorganic carbon in two small streams with different bedrock geology: Insights from carbon isotopes[J]. Radiocarbon, 2015, 57(3): 439-448. |
49 | Levin I, Naegler T, Kromer B, et al. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2[J]. Tellus B, 2010, 62(1): 26-46. |
50 | Qi Yuanzhi. Distribution and Carbon Isotopic (13C, 14C) Studies of Organic Carbon in the Changjiang River and East China Sea[D]. Qingdao: Ocean University of China, 2019. |
50 | 齐远志. 长江及东海有机碳的分布和碳同位素(13C, 14C)特征研究[D]. 青岛: 中国海洋大学, 2019. |
51 | Liu W B, An Z S, Zhou W J, et al. Carbon isotope and C/N ratios of suspended matter in rivers: An indicator of seasonal change in C-4/C-3 vegetation[J]. Applied Geochemistry, 2003, 18(8): 1 241-1 249. |
52 | Yu F L, Zong Y Q, Lloyd J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 2010, 87(4): 618-630. |
53 | Tu C L, Liu C Q, Quine T A, et al. Dynamics of soil organic carbon following land-use change: Insights from stable C-isotope analysis in black soil of Northeast China[J]. Acta Geochimica, 2018, 37(5): 746-757. |
54 | Dai S, Bi X, Chan L Y, et al. Chemical and stable carbon isotopic composition of PM2.5 from on-road vehicle emissions in the PRD region and implications for vehicle emission control policy[J]. Atmospheric Chemistry and Physics, 2015, 15(6): 3 097-3 108. |
55 | Huang Wei, Bi Xinhui, Zhang Guohua, et al. The chemical composition and stable carbon isotope characteristics of particulate matter from the residential honeycomb coal briquettes combustion[J]. Geochimica, 2014, 43(6):640-646. |
55 | 黄卫, 毕新慧, 张国华, 等. 民用蜂窝煤燃烧排放颗粒物的化学组成和稳定碳同位素特征[J]. 地球化学, 2014, 43(6): 640-646. |
56 | Liu W G, Yang H, Ning Y F, et al. Contribution of inherent organic carbon to the bulk delta δ13C signal in loess deposits from the arid western Chinese Loess Plateau[J]. Organic Geochemistry, 2007, 38(9): 1 571-1 579. |
57 | Andersson A. A systematic examination of a random sampling strategy for source apportionment calculations[J]. Science of the Total Environment, 2011, 412/413: 232-238. |
58 | Andersson A, Deng J, Du K, et al. Regionally-Varying combustion sources of the January 2013 severe haze events over Eastern China[J]. Environmental Science & Technology, 2015, 49(4): 2 038-2 043. |
59 | Hartmann J, Jansen N, Dürr H H, et al. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions?[J]. Global and Planetary Change, 2009, 69(4): 185-194. |
60 | Hartmann J, Moosdorf N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface[J]. Geochemistry, Geophysics, Geosystems, 2012, 13(12). DOI:10.1029/2012GC004370. |
61 | Chen J S, Wang F Y, Xia X H, et al. Major element chemistry of the Changjiang (Yangtze River)[J]. Chemical Geology, 2002, 187(3): 231-255. |
62 | Li J Y, Zhang J. Chemical weathering processes and atmospheric CO2 consumption of Huanghe River and Changjiang River basins[J]. Chinese Geographical Science, 2005, 15(1): 16-21. |
63 | Li S Y, Lu X X, He M, et al. Major element chemistry in the upper Yangtze River: A case study of the Longchuanjiang River[J]. Geomorphology, 2011, 129(1/2): 29-42. |
64 | Chen J S, Wang F Y, Meybeck M, et al. Spatial and temporal analysis of water chemistry records (1958-2000) in the Huanghe (Yellow River) basin[J]. Global Biogeochemical Cycles, 2005, 19(3): GB3016. |
65 | Guo X H, Cai W-J, Zhai W D, et al. Seasonal variations in the inorganic carbon system in the Pearl River (Zhujiang) estuary[J]. Continental Shelf Research, 2008, 28(12): 1 424-1 434. |
66 | Qu B, Sillanp?? M, Zhang Y, et al. Water chemistry of the headwaters of the Yangtze River[J]. Environmental Earth Sciences, 2015, 74(8): 6 443-6 458. |
67 | Dai M H, Yu Z Q, Meng F F, et al. Spatial distribution of riverine DOC inputs to the ocean: An updated global synthesis[J]. Current Opinion in Environmental Sustainability, 2012, 4(2): 170-178. |
/
〈 |
|
〉 |