我国城市大气化石源CO2的14C示踪研究进展
收稿日期: 2020-09-01
修回日期: 2020-09-08
网络出版日期: 2020-10-28
基金资助
国家自然科学基金重点项目“14C示踪和数值模拟研究我国主要城市大气化石源CO2的时空分布与区域输送”(41730108);陕西省自然科学基础研究计划项目“放射性碳定量示踪城市大气化石源CO2的技术与应用研究”(2020JCW-18)
Progress of Tracing Fossil Fuel CO2 by Radiocarbon in Chinese Cities
Received date: 2020-09-01
Revised date: 2020-09-08
Online published: 2020-10-28
Supported by
the National Science Foundation of China "The spatial-temporal distribution and regional transportation of fossil fuel CO2 using radiocarbon and model in main Chinese cities"(41730108);The Natural Science Basic Research Program of Shaanxi "Research on the technology and application of quantitative tracing of urban atmospheric fossil CO2 using radiocarbon"(2020JCW-18)
化石燃料等排放是大气CO2浓度增加的主要原因,而城市是碳排放研究的热点区域。获取化石源CO2(CO2ff)的时空变化特征,可以为政府的宏观决策及参与国际碳减排谈判提供重要的科学数据。近十年来我国科技人员在运用14C示踪城市大气CO2ff的研究方面取得了一些重要进展:通过大气、树轮和一年生植物样品14C的分析,获得了不同时间尺度和空间尺度CO2ff的变化特征,发现北方城市是减排的重点。CO2ff与PM2.5关系的研究表明,控制大气污染物可以同时降低CO2ff排放,存在减排的协同效应。WRF-CHEM模式模拟分析了关中地区CO2ff的传输,并结合Δ14CO2和δ13C对CO2ff的来源进行解析,发现西安CO2ff主要来源于本地燃煤的排放。14C示踪获得的CO2ff浓度与统计的碳排放量变化趋势和幅度基本一致,可以相互校验,保证数据的可靠性。为此建议尽快建立我国城市大气Δ14CO2观测网,投入更多的人力物力推进这项研究,服务于国家碳减排任务。
关键词: 化石源CO2(CO2ff); Δ14CO2; 源解析; 碳减排
周卫健 , 吴书刚 , 熊晓虎 , 程鹏 , 王鹏 , 侯瑶瑶 , 牛振川 , 杜花 , 陈宁 , 卢雪峰 , 付云翀 , 刘林 . 我国城市大气化石源CO2的14C示踪研究进展[J]. 地球科学进展, 2020 , 35(9) : 881 -889 . DOI: 10.11867/j.issn.1001-8166.2020.079
The main cause of increase in atmospheric CO2 concentration is the carbon emissions from fossil fuel combustions and so on. Cities are regarded as the hot spots of carbon emissions. On the basis of obtaining the levels and spatial-temporal variation characteristics of atmospheric fossil fuel CO2 (CO2ff), we can provide scientific data for government policy-making and international negotiations on carbon reductions. In the recent ten years, some important progresses have been achieved in the study of tracing urban atmospheric CO2ff using 14C by Chinese scientists. The variation characteristics of urban CO2ff at different temporal and spatial scales were obtained through the analysis of 14C in air, tree ring and annual plant samples. Our results show that the northern cities are the key points to reduce carbon emissions, and that the CO2ff emissions can be reduced simultaneously by controlling atmospheric pollutant emissions, indicating a synergistic emission reduction. It was found that CO2ff in Xi'an was mainly from local coal-burning emissions with the use of improved WRF-CHEM model and δ13C. Finally, the yearly CO2ff traced by tree-ring 14C in Xi'an showed similar trends and amplitudes with the statistical data of carbon emissions, which indicates that the 14C tracing method and statistical method can be mutually validated to ensure the reliability of the data. In order to promote the 14C trace study to serve the national carbon emission reduction task, we suggest that the urban atmospheric Δ14CO2 observation network should be established as soon as possible, and that this study should be enhanced with more scientists involved in it and more financial resources to support it.
1 | Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2013. |
2 | Le Quéré C, Andrew R M, Friedlingstein P, et al. Global carbon budget 2018[J]. Earth System Science Data, 2018, 10(4): 2 141-2 194. |
3 | Xinhua News Agency. Enhanced?Actions?on?Climate?Change:?China's?Intended?Nationally?Determined?Contributions [EB/OL]. (2015-06-30). [2020-08-08]. . |
3 | 新华社. 强化应对气候变化行动——中国国家自主贡献[EB/OL]. ([2015-06-30). [2020-08-08]. . |
4 | IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan, 2006. |
5 | Liu Zhu, Guan Dabo, Wei Wei, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7 565):335-338. |
6 | Marland G, Boden T A, Andres R J. Global, Regional, and National Fossil Fuel CO2 Emissions, Trends:A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center[R]. Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn., USA, 2007. |
7 | Gregg J S, Robert J A, Gregg M. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production[J]. Geophysical Research Letters, 2008, 35(8):L08806. |
8 | Ciais P, Paris J D, Marland G, et al. The european carbon balance. Part 1: Fossil fuel emissions[J]. Global Change Biology, 2010, 16: 1 395-1 408. |
9 | Godwin H. Half-life of radiocarbon[J]. Nature, 1962, 195(4 845):984. |
10 | Suess H E. Radiocarbon concentration in modern wood[J]. Science, 1955, 122(3 166): 415. |
11 | Turnbull J C, Miller J B, Lehman S J, et al. Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange[J]. Geophysical Research Letters, 2006, 33(1):L01817. |
12 | Stuiver M, Polach H A. Discussion: Reporting of 14C data[J]. Radiocarbon, 1977, 19(3): 355-363. |
13 | Levin I, Kromer B, Schmidt M, et al. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations[J]. Geophysical Research Letters, 2003, 30(23):2 194. |
14 | Hsueh D Y, Krakauer N Y, Randerson J T, et al. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America[J]. Geophysical Research Letters, 2007, 34(2):L02816. |
15 | Kuc T, Rozanski K, Zimnoch M, et al. Two decades of regular observations of 14CO2 and 13CO2 content in atmospheric carbon dioxide in Central Europe: Long-term changes of regional anthropogenic fossil CO2 emissions[J]. Radiocarbon, 2007, 49(2):807-816. |
16 | Miller J B, Lehman S J, Montzka S A, et al. Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14CO2[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D8): D08302. |
17 | Levin I, Schuchard J, Kromer B, et al. The continental European suess effect[J]. Radiocarbon, 1989, 31(3): 431-440. |
18 | Riley W J, Hsueh D Y, Randerson J T, et al. Where do fossil fuel carbon dioxide emissions from california go? An analysis based on radiocarbon observations and an atmospheric transport model[J]. Journal of Geophysical Research: Biogeosciences, 2008, 113(G4). DOI:10.1029/2007JG000625. |
19 | Turnbull J, Rayner P, Miller J, et al. On the use of 14CO2 as a tracer for fossil fuel CO2: Quantifying uncertainties using an atmospheric transport model[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D22). DOI:10.1029/2009jd012308. |
20 | Djuricin S, Xu X, Pataki D E. The radiocarbon composition of tree rings as a tracer of local fossil fuel emissions in the Los Angeles Basin: 1980-2008[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D12). DOI:10.1029/2011JD017284. |
21 | Bozhinova D, van der Molen M K, Krol M C, et al. Simulating the integrated Δ14CO2 signature from Anthropogenic emissions over Western Europe[J]. Atmospheric Chemistry and Physics, 2013, 13(11): 30 611-30 652. |
22 | Wenger A, Pugsley K, O'Doherty S, et al. Atmospheric radiocarbon measurements to quantify CO2 emissions in the UK from 2014 to 2015[J]. Atmospheric Chemistry and Physics, 2019, 19: 14 057-14 070. |
23 | Basu S, Lehman S J, Miller J B, et al. Estimating US fossil fuel CO2 emissions from measurements of 14C in atmospheric CO2[J]. Proceedings of the National Academy of Sciences, 2020, 117(24): 13 300-13 307. |
24 | Newman S, Xu X, Gurney K R, et al. Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles Megacity[J]. Atmospheric Chemistry and Physics, 2016, 16(6):3 843-3 863. |
25 | Zhou Weijian, Niu Zhenchuan, Wu Shugang, et al. Fossil fuel CO2 traced by radiocarbon in fifteen Chinese cities[J]. Science of the Total Environment, 2020, 729: 138 639. |
26 | Yang Wenfeng. Analysis of pollution meteorological conditions in Xi'an[J]. Journal of Shaanxi Meteorology, 2003, 5:18-20. |
26 | 杨文峰. 西安市污染气象条件分析[J]. 陕西气象, 2003, 5: 18-20. |
27 | Wilson A, Grinsted M. 12C/13C in cellulose and lignin as palaeothermometers[J]. Nature, 1977, 265:133-135. |
28 | Hou Yaoyao, Zhou Weijian, Cheng Peng, et al. 14C-AMS measurements in modern tree rings to trace local fossil fuel-derived CO2 in the Greater Xi'an area, China[J]. Science of the Total Environment, 2020, 715: 136 669. |
29 | Niu Zhenchuan, Zhou Weijian, Wu Shugang, et al. Atmospheric fossil fuel CO2 traced by Δ14C in Beijing and Xiamen, China: Temporal variations, inland/coastal differences and influencing factors[J]. Environmental Science & Technology, 2016, 50(11):5 474-5 480. |
30 | Ding Ping, Shen Chengde, Yi Weixi, et al. Fossil-Fuel-Derived CO2 contribution to the urban atmosphere in Guangzhou, South China, estimated by 14CO2 observation, 2010-2011[J]. Radiocarbon, 2013, 55(2/3):791-803. |
31 | Zhou Weijian, Wu Shugang, Huo Wenwen, et al. Tracing fossil fuel CO2 using Δ14C in Xi'an City, China[J]. Atmospheric Environment, 2014, 94(0):538-545. |
32 | Raducan G, Stefan S. Characterization of traffic-generated pollutants in Bucharest [J]. Atmósfera, 2009, 22(1): 99-110. |
33 | Gurney K R, Razlivanov I, Song Y, et al. Quantification of fossil fuel CO2 Emissions on the building/street scale for a large US City [J]. Environmental Science & Technology, 2012, 46(21): 12 194-12 202. |
34 | Chen Han, Huang Ye, Shen Huizhong, et al. Modeling temporal variations in global residential energy consumption and pollutant emissions [J]. Applied Energy, 2016, 184:820-829. |
35 | Feng Tian, Zhou Weijian, Wu Shugang, et al. High-resolution simulation of wintertime fossil fuel CO2 in Beijing, China: Characteristics, sources, and regional transport [J]. Atmospheric Environment, 2019, 198: 226-235. |
36 | Xie Shaowen. Radiocarbon (14C) Tracing the Vertical Variations of Fossil Fuel CO142 in Typical Area of Shaanxi Province [D]. Beijing: University of Chinese Academy of Sciences, 2016. |
36 | 谢邵文. 陕西省典型区域化石源CO2垂直高度变化的14C示踪研究[D]. 北京:中国科学院大学, 2016. |
37 | Niu Zhenchuan, Zhou Weijian, Cheng Peng, et al. Observations of atmospheric Δ14CO2 at the global and regional background sites in China: Implication for fossil fuel CO2 inputs [J]. Environmental Science & Technology, 2016, 50(22):12 122-12 128. |
38 | Niu Zhenchuan, Zhou Weijian, Feng Xue, et al. Determining diurnal fossil fuel CO2 and biological CO2 by Δ14CO2 observation on certain summer and winter days at Chinese background sites[J]. Science of the Total Environment, 2020, 718: 136 864. |
39 | Feng Tian, Zhou Weijian, Wu Shugang, et al. Simulations of summertime fossil fuel CO2 in the Guanzhong Basin, China [J]. Science of the Total Environment, 2018, 624: 1 163-1 170. |
40 | Xi Xianting, Ding Xingfang, Fu Dongpo, et al. Regional Δ14C patterns and fossil fuel derived CO2 distribution in the Beijing area using annual plants [J]. Chinese Science Bulletin, 2011, 56(16): 1 721-1 726. |
41 | An Zhisheng, Huang Rujing, Zhang Renyi, et al. Severe haze in Northern China: A synergy of anthropogenic emissions and atmospheric processes [J]. Proceedings of the National Academy of Sciences, 2019, 116(18): 8 657-8 666. |
42 | Xiong Xiaohu, Zhou Weijian, Wu Shugang, et al. Two-year observation of fossil fuel carbon dioxide spatial distribution in Xi'an City[J]. Advances in Atmospheric Sciences, 2020, 37(6):569-575. |
/
〈 |
|
〉 |