近50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验
收稿日期: 2020-01-10
修回日期: 2020-03-06
网络出版日期: 2020-06-05
基金资助
中国科学院A类战略性先导科技专项“泛第三极环境变化与绿色丝绸之路建设”(XDA20040301);第二次青藏高原综合科学考察研究专题“工矿区地表系统健康诊断与绿色发展考察研究”(2019QZKK1003)
Potential Evapotranspiration Characteristic and Its Abrupt Change Across the Qinghai-Tibetan Plateau and Its Surrounding Areas in the Last 50 Years
Received date: 2020-01-10
Revised date: 2020-03-06
Online published: 2020-06-05
Supported by
the Strategic Priority Research Program of the Chinese Academy of Sciences “Pan-Third Pole Environment Study for a Green Silk Road (Pan-TPE)”(XDA20040301);The Second Tibetan Plateau Scientific Expedition and Research Program "Green development pathway in Tibetan Plateau: Industry and mining"(2019QZKK1003)
利用FAO Penman-Monteith方程和青藏高原及周边地区274个气象站逐日常规观测资料,结合中国生态地理分区方案,对1970—2017年高原及周边地区潜在蒸散发的空间格局及突变特征进行分析。结果表明:
姚天次 , 卢宏玮 , 于庆 , 冯玮 . 近50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020 , 35(5) : 534 -546 . DOI: 10.11867/j.issn.1001-8166.2020.031
Daily routine observation data from 274 meteorological stations in the Qinghai-Tibetan Plateau and its surrounding areas from 1970 to 2017 were utilized to examine the spatial patterns and abrupt changes of potential evapotranspiration with the formula of FAO Penman-Monteith, in consideration of China’s eco-geographical divisions. The results showed that
1 | Yao Tandong, Chen Fahu, Cui Peng, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(9): 924-931. |
1 | 姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32(9): 924-931. |
2 | Deng Wei, Zhao Wei, Liu Bintao, et al. Water security and the countermeasures in South Asia based on the “Belt and Road” initiative[J]. Advances in Earth Science, 2018, 33(7): 687-701. |
2 | 邓伟, 赵伟, 刘斌涛, 等. 基于“一带一路”的南亚水安全与对策[J]. 地球科学进展, 2018, 33(7): 687-701. |
3 | Zhu Liping, Ju Jianting, Qiao Baojin, et al. Recent lake changes of the Asia Water Tower and their climate response: Progress, problems and prospects[J]. Chinese Science Bulletin, 2019, 64(27): 2 796-2 806. |
3 | 朱立平, 鞠建廷, 乔宝晋, 等. “亚洲水塔”的近期湖泊变化及气候响应: 进展、问题与展望[J]. 科学通报, 2019, 64(27): 2 796-2 806. |
4 | Yang K, Wu H, Qin J, et al. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review[J]. Global and Planetary Change, 2014, 112: 79-91. |
5 | Sun Zhizhong, Ma Wei, Mu Yanhu, et al. Permafrost change under natural sites along the Qinghai-Tibet Railway during the years of 2006-2015[J]. Advances in Earth Science, 2018, 33(3): 248-256. |
5 | 孙志忠, 马巍, 穆彦虎, 等. 青藏铁路沿线天然场地多年冻土变化[J]. 地球科学进展, 2018, 33(3): 248-256. |
6 | Liu Y, Chen H, Zhang G, et al. The advanced South Asian monsoon onset accelerates lake expansion over the Tibetan Plateau[J]. Science Bulletin, 2019, 64(20): 1 486-1 489. |
7 | Ding Yongjian, Zhang Shiqiang, Zhao Lin, et al. Global warming weakening the inherent stability of glaciers and permafrost[J]. Science Bulletin, 2019, 64(4): 245-253. |
8 | Wu Guoxiong, Zhuo Haifeng, Wang Ziqian, et al. Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing I. Over Tibetan Plateau[J]. Science China Earth Sciences, 2016, 46(9): 1 209-1 222. |
8 | 吴国雄, 卓海峰, 王子谦, 等. 夏季亚洲大地形双加热及近对流层顶位涡强迫的激发(I): 青藏高原主体加热[J]. 中国科学: 地球科学, 2016, 46(9): 1 209-1 222. |
9 | Li G, Zhang F, Jing Y, et al. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001-2013[J]. Science of the Total Environment, 2017, 596: 256-265. |
10 | Yu Tengfei, Feng Qi, Si Jianhua, et al. Estimating terrestrial ecosystems evapotranspiration: A review on methods of integrateing remote sensing and ground observations[J]. Advances in Earth Science, 2011, 26(12): 1 260-1 268. |
10 | 鱼腾飞, 冯起, 司建华, 等. 遥感结合地面观测估算陆地生态系统蒸散发研究综述[J]. 地球科学进展, 2011, 26(12): 1 260-1 268. |
11 | Liu W, Sun F. Assessing estimates of evaporative demand in climate models using observed pan evaporation over China[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(14): 8 329-8 349. |
12 | Wang Jingfeng, Liu Yuanbo, Zhang Ke. The maximum entropy production approach for estimating evapotranspiration: Principle and applications[J]. Advances in Earth Science, 2019, 34(6): 596-605. |
12 | Wang Jingfeng, 刘元波, 张珂. 最大熵增地表蒸散模型: 原理及应用综述[J]. 地球科学进展, 2019, 34(6): 596-605. |
13 | Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56[J]. Fao, Rome, 1998, 300(9): D5109. |
14 | Ramírez J A, Hobbins M T, Brown T C. Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet's hypothesis[J]. Geophysical Research Letters, 2005, 32(15): L15401. |
15 | Hansen J, Rind D, Goldberg R, et al. Potential evapotranspiration and the likelihood of future drought[J]. Journal of Geophysical Research: Atmospheres, 1990, 95(D7): 9 983-10 004. |
16 | Peterson T C, Golubev V S, Groisman P Y. Evaporation losing its strength[J]. Nature, 1995, 377(6 551): 687-688. |
17 | Cong Z T, Yang D W, Ni G H. Does evaporation paradox exist in China?[J]. Hydrology and Earth System Sciences, 2009, 13(3): 357-366. |
18 | Chen S, Liu Y, Thomas A. Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961-2000[J]. Climatic Change, 2006, 76(3/4): 291-319. |
19 | Zhang X, Ren Y, Yin Z, et al. Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971-2004[J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D15105. |
20 | Wang Buwei, Zhang Xueqin. Change and attribution of reference evapotranspiration over the Tibetan Plateau during the period of 1971-2014[J]. Arid Zone Research, 2019, 36(2): 269-279. |
20 | 汪步惟, 张雪芹. 1971—2014年青藏高原参考蒸散变化及其归因[J]. 干旱区研究, 2019, 36(2): 269-279. |
21 | Zhang H, Ding M, Li L, et al. Continuous wetting on the Tibetan Plateau during 1970-2017[J]. Water, 2019, 11(12): 2 605. |
22 | Zhang Yili, Li Bingyuan, Zheng Du. A discussion on the boundary and area of the Tibetan Plateau in China[J]. Geographical Research, 2002, 21(1): 1-8. |
22 | 张镱锂, 李炳元, 郑度. 论青藏高原范围与面积[J]. 地理研究, 2002, 21(1): 1-8. |
23 | Zheng Du. Study on the Eco-geographical Region System of China[M]. Beijing: The Commercial Press, 2008. |
23 | 郑度. 中国生态地理区域系统研究[M]. 北京: 商务图书馆, 2008. |
24 | Roderick M L, Rotstayn L D, Farquhar G D, et al. On the attribution of changing pan evaporation[J]. Geophysical Research Letters, 2007, 34(17). DOI:10.1029/2007GL031166. |
25 | Yin Y, Wu S, Zheng D, et al. Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China[J]. Agricultural Water Management, 2008, 95(1): 77-84. |
26 | Mallakpour I, Villarini G. A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean[J]. Hydrological Sciences Journal, 2016, 61(2): 245-254. |
27 | Tomé A R, Miranda P M A. Piecewise linear fitting and trend changing points of climate parameters[J]. Geophysical Research Letters, 2004, 31(2). DOI:10.1029/2003GL019100. |
28 | Yao T, Lu H, Feng W, et al. Evaporation abrupt changes in the Qinghai-Tibet Plateau during the last half-century[J]. Scientific Reports, 2019, 9(1): 1-13. |
29 | Mandelbrot B B, Wallis J R. Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence[J]. Water Resources Research, 1969, 5(5): 967-988. |
30 | Shi Neng, Chen Jiaqi, Tu Qipu. 4-phase climate change features in the last 100years over China[J]. Acta Meteorologica Sinica, 1995, 53(4): 431-439. |
30 | 施能, 陈家其, 屠其璞. 中国近100年来4个年代际的气候变化特征[J]. 气象学报, 1995, 53(4): 431-439. |
31 | Zhao X, Li Z, Zhu Q. Change of precipitation characteristics in the water-wind erosion crisscross region on the Loess Plateau, China, from 1958 to 2015[J]. Scientific Reports, 2017, 7(1): 1-16. |
32 | Niu Tao, Chen Longxun, Wang Wen. REOF analysis of climatic characteristics of winter temperature and humidity on Xizang-Qinghai Plateau[J]. Journal of Applied Meteorological Science, 2002, 13(5): 560-570. |
32 | 牛涛, 陈隆勋, 王文. 青藏高原冬季平均温度、湿度气候特征的REOF分析[J]. 应用气象学报, 2002, 13(5): 560-570. |
33 | Lu Longhua, Zhang De’er. Spatio-temporal variation of annual precipitation in China and its relationship with the east Asian summer monsoon[J]. Quaternary Sciences, 2013, 33(1): 97-107. |
33 | 陆龙骅, 张德二. 中国年降水量的时空变化特征及其与东亚夏季风的关系[J]. 第四纪研究, 2013, 33(1): 97-107. |
34 | Yao Shibo, Jiang Dabang, Fan Guangzhou. Seasonality of precipitation over China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(6): 1 191-1 203. |
34 | 姚世博, 姜大膀, 范广洲. 中国降水的季节性[J]. 大气科学, 2017, 41(6): 1 191-1 203. |
35 | Yao Huiru. Characteristics of Wind Speed and Atmospheric Kinetic Energy over the Tibetan Plateau in Spring and Their Relationship with Vegetation Coverage[D]. Nanjing: Nanjing University of Information Science and Technology, 2018. |
35 | 姚慧茹. 青藏高原春季风速和大气动能的变化特征及其与植被覆盖的关系[D]. 南京: 南京信息工程大学, 2018. |
36 | Wang T, Zhang J, Sun F, et al. Pan evaporation paradox and evaporative demand from the past to the future over China: A review[J]. Wiley Interdisciplinary Reviews: Water, 2017, 4(3): e1207. |
37 | Wang L, Chen W. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China[J]. International Journal of Climatology, 2014, 34(6): 2 059-2 078. |
38 | Yao T, Wu F, Ding L, et al. Multispherical interactions and their effects on the Tibetan Plateau’s Earth system: A review of the recent researches[J]. National Science Review, 2015, 2(4): 468-488. |
39 | Liu B. A spatial analysis of pan evaporation trends in China, 1955-2000[J]. Journal of Geophysical Research, 2004, 109: D15102. |
40 | Wang J, Wang Q, Zhao Y, et al. Temporal and spatial characteristics of pan evaporation trends and their attribution to meteorological drivers in the Three-River Source region, China[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(13): 6 391-6 408. |
41 | Lu H, Guan Y, He L, et al. Patch aggregation trends of the global climate landscape under future global warming scenario[J]. International Journal of Climatology, 2019. DOI: 10.1002/joc.6358. |
42 | Tian P, Lu H, Feng W, et al. Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: A case study in Lhasa River Basin[J]. CATENA, 2020, 187: 104340. |
43 | Feng Song, Tang Maocang, Wang Dongmei. New evidence for the Qinghai-Xizang (Tibet) Plateau as a pilot region of climatic fluctuation in China[J]. Chinese Science Bulletin, 1998, 43(6): 633-636. |
43 | 冯松, 汤懋苍, 王冬梅. 青藏高原是我国气候变化启动区的新证据[J]. 科学通报, 1998, 43(6): 633-636. |
44 | Cai Ying, Li Dongliang, Tang Maocang, et al. Decadal temperature changes over Qinghai-Xizang Plateau in recent 50 years[J]. Plateau Meteorology, 2003, 22(5): 464-470. |
44 | 蔡英, 李栋梁, 汤懋苍, 等. 青藏高原近50年来气温的年代际变化[J]. 高原气象, 2003, 22(5): 464-470. |
45 | Ding Yihui, Zhang Li. Intercomparison of the time for climate abrupt change between the Tibetan Plateau and other regions in China[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 794-805. |
45 | 丁一汇, 张莉. 青藏高原与中国其他地区气候突变时间的比较[J]. 大气科学, 2008, 32(4): 794-805. |
46 | Liang Xiaowen, Yang Meixue, Wan Guoning, et al. Research on the homogeneity of air temperature series over Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 275-285. |
46 | 梁小文, 杨梅学, 万国宁, 等. 青藏高原气温序列的均一性研究[J]. 冰川冻土, 2015, 37(2): 275-285. |
/
〈 |
|
〉 |