深水珊瑚研究进展

重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法

  • 党皓文 ,
  • 马小林 ,
  • 杨策 ,
  • 金海燕 ,
  • 翦知湣
展开
  • 1.同济大学海洋地质国家重点实验室, 上海 200092
    2.中国科学院地球环境研究所黄土与 第四纪地质国家重点实验室, 陕西 西安 710061
党皓文(1985-),男,陕西西安人,副研究员,主要从事海洋地质学研究. E-mail:hwdang@tongji.edu.cn

收稿日期: 2019-10-31

  修回日期: 2019-11-12

  网络出版日期: 2020-02-12

基金资助

同济大学海洋地质国家重点实验室探索课题“探索冷水珊瑚的高分辨率古环境重建意义”(MG20190101);国家自然科学基金项目“全新世ENSO和沃克环流的演变”(91958208)

Reconstructing High-resolution Deep-sea Environmental Change: Inorganic Geochemical Proxy Methods of Cold-water Bamboo Corals

  • Haowen Dang ,
  • Xiaolin Ma ,
  • Ce Yang ,
  • Haiyan Jin ,
  • Zhimin Jian
Expand
  • 1.State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092,China
    2.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061,China
Dang Haowen (1985-), male, Xi’an City, Shaanxi Province, Associate professor. Research areas include marine geology and paleoceanography. E-mail:hwdang@tongji.edu.cn

Received date: 2019-10-31

  Revised date: 2019-11-12

  Online published: 2020-02-12

Supported by

the Discovery Project of the State Key Laboratory of Marine Geology, Tongji University “Exploring the high-resolution paleoenvironmental reconstruction of cold-water corals”(MG20190101);The National Natural Science Foundation of China “Holocene evolution of ENSO and Walker Circulation”(91958208)

摘要

广泛分布于海洋深部的竹节珊瑚,以其碳酸钙和蛋白质相间的“竹节状”骨骼而得名,且横向上具有“树轮状”生长纹层。利用竹节珊瑚进行古海洋学再造,可以填补传统方法在时间和空间上的空缺。着重介绍竹节珊瑚的无机地球化学指标方法,包括Mg/Ca温度计、Ba/Ca营养物浓度计和δ11B-pH计,并简要描述了生命效应的潜在影响。最近在西太平洋海域新发现的深海竹节珊瑚林,开拓了竹节珊瑚古海洋学研究的新领域。

本文引用格式

党皓文 , 马小林 , 杨策 , 金海燕 , 翦知湣 . 重建高分辨率深海环境变化:冷水竹节珊瑚无机地球化学方法[J]. 地球科学进展, 2019 , 34(12) : 1262 -1272 . DOI: 10.11867/j.issn.1001-8166.2019.12.1262

Abstract

The cold-water bamboo coral, dwelling in the depths of global seas, is characterized by the “bamboo-like” skeletal structure of alternating calcite internodes and gorgonin nodes, and has “tree-ring-like” concentric growth rings transversally. Paleoceanograhic reconstructions using bamboo coals would fill the geographic and temporal gaps of traditional means. In this work, the inorganic geochemical proxy methods for bamboo coral are introduced, including Mg/Ca for ambient temperature, Ba/Ca for seawater nutrient content, and δ11B for seawater pH. Also, the potential influences of vital effect on the proxy reconstructions are briefly discussed. With the recent findings of deep-sea bamboo coral forests in the western Pacific region, a new territory of bamboo coral paleoceanography is opened for the scientists from the nearby countries.

参考文献

1 Prouty N G, Roark E B, Andrews A H, et al. Age, rates growth, and paleoclimate studies in deep‐sea corals of the United States[M]//Hourigan T F, Etnoyer P J, Cairns S D. The State of Deep‐Sea Coral and Sponge Ecosystems of the United States. NOAA Technical Memorandum NMFS‐OHC‐4, Silver Spring, MD. 2017: 22.
2 Cairns S D, Gerhswin L A, Brook F, et al. Cnidaria Phylum; corals, medusae, hydroids, myxozoa[M]// Dennis P G. Kingdom Animalia: Radiata, Lophotrochozoa,Deuterostomia. New Zealand Inventory of Biodiversity. Volume1. Christchurch: Canterbury University Press,2009.
3 Noé S, W-C Dullo. Skeletal morphogenesis and growth mode of modern and fossil deep-water isidid gorgonians (Octocorallia) in the West Pacific (New Zealand and Sea of Okhotsk) [J]. Coral Reefs, 2006, 25(3): 303-320.
4 Pérez C D, de Moura Neves B, Cordeiro R T, et al. Diversity and distribution of Octocorallia[M]// Goffredo S, Dubinsky Z. The Cnidaria, Past, Present and Future. Cham, Switzerland: Springer International Publishing, 2016:109-123.
5 Wang Pinxian. Deep-sea coral forest [J]. Advances in Earth Science, 2019,34(12):1 222-1 242.
5 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019,34(12):1 222-1 242.
6 Zou R, Huang B, Wang X. Studies on the Gorgonians of China—Ⅰ. Isis with one new species [J]. Acta Oceanologica Sinica, 1991, 10(4): 593-602.
7 Huang Hui, Li Xiubao, He Jianguo, et al. Species diversity and distribution of gorgonian at Xuwen, Zhanjiang,Guangdong Province[J]. Journal of Tropical Oceanography, 2007, 26(1): 60-67.
7 黄晖, 李秀保, 何建国, 等. 湛江徐闻西海岸柳珊瑚的物种多样性和分布研究[J]. 热带海洋学报, 2007, 26(1): 60-67.
8 Huang Hui, Li Xiubao, Lian Jiansheng, et al. Species diversity and distribution of gorgonian (Cnidaria, Anthozoa, Octocoral) in Xiamen Bay and Dongshan Bay, Fujian [J]. Journal of Oceanography in Taiwan Strait, 2007, 26(1): 92-98.
8 黄晖, 李秀保, 练健生, 等. 福建厦门湾和东山湾海域柳珊瑚的物种多样性及其分布[J]. 台湾海峡, 2007, 26(1): 92-98.
9 Li Xiubao, Huang Hui, Lian Jiansheng, et al. Diversity and spatial distribution of gorgonian coral in Dongshan Coastal waters in Fujian, China [J]. Journal of Oceanography in Taiwan Strait, 2011, 30(1): 92-96.
9 李秀保, 黄晖, 练健生, 等. 福建东山海域柳珊瑚种类空间分布与多样性[J]. 台湾海峡, 2011, 30(1): 92-96.
10 Huang Hui, He Jianguo, Li Xiubao, et al. Molecular phylogeny of gorgonian [J]. Marine Science Bulletin, 2005, 24(2), 63-78.
10 黄晖, 何建国, 李秀保, 等. 柳珊瑚分子系统发育学的研究进展[J]. 海洋通报, 2005, 24(2): 63-78.
11 Li J, Wang P. Discovery of deep-water bamboo coral forest in the South China Sea[J]. Scientific Reports, 2019, 9(1):1-5.
12 Sherwood O A, Scott D B, Risk M J, et al. Radiocarbon evidence for annual growth rings in the deep-sea octocoral Primnoa resedaeformis[J]. Marine Ecology Progress Series, 2005, 301: 129-134.
13 Sherwood O A, Edinger E N. Ages and growth rates of some deep-sea gorgonian and antipatharian corals of Newfoundland and Labrador[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2009, 66(1): 142-152.
14 Roark E B, Guilderson T P, Dunbar R B, et al. Extreme longevity in proteinaceous deep-sea corals[J]. PNAS, 2009, 106(13): 5 204-5 208.
15 Thresher R E, MacRae C M, Wilson N C, et al. Feasibility of age determination of deep-water bamboo corals (Gorgonacea; Isididae) from annual cycles in skeletal composition[J]. Deep-Sea Research I:Oceanographic Research Papers, 2009, 56(3): 442-449.
16 Roark E B, Guilderson T P, Flood-Page S, et al. Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska[J]. Geophysical Research Letters, 2005, 32(4). DOI:10.1029/2004GL021919.
17 Sherwood O A, Heikoop J M, Scott D B, et al. Stable isotopic composition of deep-sea gorgonian corals Primnoa spp.: A new archive of surface processes[J]. Marine Ecology Progress Series, 2005, 301: 135-148.
18 Thresher R, Rintoul S R, Koslow J A, et al. Oceanic evidence of climate change in southern Australia over the last three centuries[J]. Geophysical Research Letters, 2004, 31(7). DOI: 10.1029/2003GL018869.
19 Hill T M, Lavigne M, Spero H J, et al. Variations in seawater Sr/Ca recorded in deep-sea bamboo corals[J]. Paleoceanography, 2012, 27(3). DOI:10.1029/2011PA002260.
20 Tracey D M, Neil H, Marriott P, et al. Age and growth of two genera of deep-sea bamboo corals (family Isididae) in New Zealand waters[J]. Bulletin of Marine Science, 2007, 81: 393-408.
21 Cheng H, Adkins J, Edwards R L, et al. U-Th dating of deep-sea corals[J]. Geochimica et Cosmochimica Acta, 2000, 64(4): 2 401-2 416.
22 Sherwood O A, Scott D B, Risk M J. Late Holocene radiocarbon and aspartic acid racemization dating of deep-sea octocorals[J]. Geochimica et Cosmochimica Acta, 2006, 70(11): 2 806-2 814.
23 Miller G H, Kaufman D S, Clarke S J. Amino acid dating[M]// Scott A E,Cary J M. Encyclopedia of Quaternary Science: Second Edition. Oxford: Elsevier Inc., 2013: 37-48.
24 Huang Enqing, Kong Le, Tian Jun. Dating methods of cold-water corals and their application in reconstructing carbon-reservoir ages of intermediate and deep oceans[J]. Advances in Earth Science, 2019,34(12):1 243-1 251.
24 黄恩清, 孔乐, 田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019,34(12):1 243-1 251.
25 Frenkel M M, LaVigne M, Miller H R, et al. Quantifying bamboo coral growth rate nonlinearity with the radiocarbon bomb spike: A new model for paleoceanographic chronology development[J]. Deep Sea Research I: Oceanographic Research Papers, 2017, 125: 26-39.
26 Griffin S, Druffel E R M. Sources of carbon to deep-sea corals[J]. Radiocarbon, 1989, 31(3): 533-543.
27 Farmer J R, Robison L F, H?nisch B. Growth rate determinations from radiocarbon in bamboo corals (genus Keratoisis) [J]. Deep Sea Research I: Oceanographic Research Papers, 2015, 105: 26-40.
28 Thresher R E, MacRae C M, Wilson N C, et al. Feasibility of age determination of deep-water bamboo corals (Gorgonacea; Isididae) from annual cycles in skeletal composition[J]. Deep-Sea Research I: Oceanographic Research Papers, 2009, 56: 442-449.
29 Thresher R E, Fallon S J, Townsend A T. A "core-top" screen for trace element proxies of environmental conditions and growth rates in the calcite skeletons of bamboo corals (Isididae)[J]. Geochimica et Cosmochimica Acta, 2016, 193: 75-99.
30 Thresher R E. Environmental and compositional correlates of growth rate in deep-water bamboo corals (Gorgonacea; Isididae)[J]. Marine Ecology Progress Series, 2009, 397: 187-196.
31 Thresher R E, Wilson N C, MacRae C M, et al. Temperature effects on the calcite skeletal composition of deep-water gorgonians (Isididae)[J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4 655-4 670.
32 LaVigne M, Hill T M, Spero H J, et al. Bamboo coral Ba/Ca: Calibration of a new deep ocean refractory nutrient proxy[J]. Earth and Planetary Science Letters, 2011, 312(3/4): 506-515.
33 Farmer J R, H?nisch B, Robinson L F, et al. Effects of seawater-pH and biomineralization on the boron isotopic composition of deep-sea bamboo corals[J]. Geochimica et Cosmochimica Acta, 2015, 155: 86-106.
34 Kong Le, Huang Enqing, Tian Jun. Oxygen and carbon isotopes of cold-water corals—Reconstructing paleotemperature changes and calcification mechanism [J]. Advances in Earth Science, 2019,34(12):1 252-1 261.
34 孔乐, 黄恩清, 田军. 冷水珊瑚氧、碳同位素——古水温重建与钙化机制[J]. 地球科学进展, 2019,34(12):1 252-1 261.
35 Luo Zhongyuan, Li Jiangtao, Jia Guodong. Food and its geochemical implications of deep-water corals [J]. Advances in Earth Science, 2019,34(12):1 234-1 242.
35 罗中原, 李江涛, 贾国东. 深水珊瑚的食物及其地球化学意义[J]. 地球科学进展, 2019,34(12):1 234-1 242.
36 Sherwood O A, Lehmann M F, Schubert C J, et al. Nutrient regime shift in the western North Atlantic indicated by compound-specific δ15N of deep-sea gorgonian corals[J]. PNAS, 2011, 108(3): 1 011-1 015.
37 Sherwood O A, Guilderson T P, Batista F C, et al. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age[J]. Nature, 2014, 505(7 481):78.
38 McMahon K W, McCarthy M D, Sherwood O A, et al. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean[J]. Science, 2015, 350(6 267): 1 530-1 533.
39 McMahon K W, Williams B, Guilderson T P, et al. Calibrating amino acid δ13C and δ15N offsets between polyp and protein skeleton to develop proteinaceous deep-sea corals as paleoceanographic archives[J]. Geochimica et Cosmochimica Acta, 2018, 220: 261-275.
40 Matsumoto A K. Effects of low water temperature on growth and magnesium carbonate concentrations in the cold-water gorgonian Primnoa pacifica[J]. Bulletin of Marine Science, 2007, 81(3): 423-453.
41 Shirai K, Kusakabe M, Nakai S, et al. Deep-sea coral geochemistry: Implication for the vital effect[J]. Chemical Geology, 2005, 224(4): 212-222.
42 Rollion-Bard C, J-P Cuif, Blamart D. Optical observations and geochemical data in deep-sea Hexa- and Octo-coralla specimens[J]. Minerals, 2017,7(9):154.
43 Sinclair D J, Williams B, Allard G, et al. Reproducibility of trace element profiles in a specimen of the deep-water bamboo coral Keratoisis sp.[J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5 101-5 121.
44 Thresher R E, MacRae C M, Wilson N C, et al. Environmental effects on the skeletal composition of deep-water Gorgonians (Keratoisis spp.; Isididae) [J]. Bulletin of Marine Science, 2007, 81(3): 409-422.
45 Geyman B M, Ptacek J L, LaVigne M, et al. Barium in deep-sea bamboo corals: Phase associations, barium stable isotopes, & prospects for paleoceanography[J]. Earth and Planetary Science Letters, 2019, 525. DOI: 10.1016/j.epsl.2019.115751.
46 Fl?ter S, Fietzke J, Gutjahr M, et al. The influence of skeletal micro-structures on potential proxy records in a bamboo coral[J]. Geochimica et Cosmochimica Acta, 2019, 248: 43-60.
47 Marks G S, LaVigne M, Hill T M, et al. Reproducibility of Ba/Ca variations recorded by northeast Pacific bamboo corals [J]. Paleoceanography, 2017, 32: 966-979.
48 Liu Yi, Peng Zicheng, Liu Weiguo, et al. Advances in paleo-seawater pH proxy: Boron isotope in marine carbonate [J]. Advances in Earth Science, 2007, 22(12): 1 240-1 250.
48 刘羿, 彭子成,刘卫国,等.古海水pH值代用指标——海洋碳酸盐硼同位素研究进展[J].地球科学进展,2007,22(12): 1 240-1 250.
49 McCulloch M, Trotter J, Montagna P, et al. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation [J]. Geochimica et Cosmochimica Acta, 2012, 87: 21-34.
50 Anagnostou E, Huang K F, You C F, et al. Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: Evidence of physiological pH adjustment[J]. Earth and Planetary Science Letters, 2012, 349/350: 251-260.
51 Balan E, Pietrucci F, Gervais C, et al. First-principles study of boron speciation in calcite and aragonite[J]. Geochimica et Cosmochimica Acta, 2016, 193: 119-131.
52 Farmer J R, Bransond O, Uchikawa J, et al. Boric acid and borate incorporation in inorganic calcite inferred from B/Ca, boron isotopes and surface kinetic modeling[J]. Geochimica et Cosmochimica Acta, 2019, 244: 229-247.
53 Martin P, Goodkin N F, Stewart J A, et al. Deep‐sea coral δ13C: A tool to reconstruct the difference between seawater pH and δ11B‐derived calcifying fluid pH[J]. Geophysical Research Letters, 2016,43(1): 299-308.
54 Robinson L F, Adkins J F, Frank N, et al. The geochemistry of deep-sea coral skeletons: A review of vital effects and applications for palaeoceanography[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2014, 99: 184-198.
55 Roberts J M, Wheeler A J, Freiwald A, et al. Cold-water Corals: The Biology and Geology of Deep-Sea Coral Habitats[M]. Cambridge, UK: Cambridge University Press, 2009.
56 Aranha R, Edinger E, Layne G, et al. Growth rate variation and potential paleoceanographic proxies in Primnoapacifica: Insights from high-resolution trace element microanalysis[J]. Deep Sea Research II:Topical Studies in Oceanography, 2014, 99: 213-226.
57 Rimstidt J D, Balog A, Webb J. Distribution of trace elements between carbonate minerals and aqueous solutions[J]. Geochimica et Cosmochimica Acta, 1998, 62: 1 851-1 863.
58 Noé S, Lembke-Jene L, Reveillaud J, et al. Microstructure, growth banding and age determination of a primnoid gorgonian skeleton (Octocorallia) from the late Younger Dryas to earliest Holocene of the Bay of Biscay[J]. Facies, 2007, 53: 177-188.
文章导航

/