深水珊瑚研究进展

冷水珊瑚测年与大洋中—深层水碳储库

  • 黄恩清 ,
  • 孔乐 ,
  • 田军
展开
  • 同济大学海洋地质国家重点实验室,上海 200092
黄恩清(1984-),男,福建福清人,副教授,主要从事古海洋和古气候学研究. E-mail:ehuang@tongji.edu.cn

收稿日期: 2019-11-19

  修回日期: 2019-12-01

  网络出版日期: 2020-02-12

基金资助

同济大学海洋地质国家重点实验室自主项目(MG20190101)

Dating Methods of Cold-water Corals and Their Application in Reconstructing Carbon-reservoir Ages of Intermediate and Deep Oceans

  • Enqing Huang ,
  • Le Kong ,
  • Jun Tian
Expand
  • State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092,China
Huang Enqing (1984-), male, Fuqing City, Fujian Province, Associate professor. Research areas include paleoceanography and paleoclimatology. E-mail:ehuang@tongji.edu.cn

Received date: 2019-11-19

  Revised date: 2019-12-01

  Online published: 2020-02-12

Supported by

the State Key Laboratory of Marine Geology, Tongji University(MG20190101)

摘要

冷水珊瑚古环境应用研究的首要问题是建立精确的年龄模式。目前常用的珊瑚定年技术包括U/Th,AMS 14C和210Pb测年,其中前两种方法尤为重要。不同冷水珊瑚属种适用不同的定年方法。高镁方解石质的竹节柳珊瑚可用AMS 14C和210Pb测试方法定年。竹节柳珊瑚具有清晰的生长纹层,厘定其年龄模式后,可以成为中—深层大洋环境演变的高分辨率记录载体。文石质石珊瑚同时适用于U/Th和AMS 14C测年方法,在古海洋研究中有特殊价值。由于u/Th测年可以提供样品的绝对年龄,因此进一步计算可获得中—深层大洋的碳储库年龄,这为探究轨道和千年时间尺度上大洋—大气碳交换这一重大学术问题提供了可靠资料。冷水珊瑚测年数据发现末次冰消期时,赤道大西洋和南大洋中层水的碳储库年龄在Heinrich Stadial 1事件结束前后突然大幅度减小,很可能表示深部大洋一部分无机碳转移进入了大气圈,或者代表Heinrich Stadial 1事件前后大西洋中层水分别主要受南半球和北半球潜沉水团的影响。

本文引用格式

黄恩清 , 孔乐 , 田军 . 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019 , 34(12) : 1243 -1251 . DOI: 10.11867/j.issn.1001-8166.2019.12.1243

Abstract

Establishing a precise chorology is a critical issue when employing cold-water coral as paleoenvironmental archives. Currently, U-Th, 14C and 210Pb dating techniques are the most frequently used methods. The high-magnesium calcite skeleton of bamboo coral has clear growth bands, which is appropriate for 14C and 210Pb dating methods and holds a great potential to be high-resolution archives of mid-to-deep ocean evolution. Aragonitic stony coral is appropriate for both U-Th and 14C dating methods, which is valuable in paleoceanographic research. Because the U-Th method can provide the absolute chronology of coral samples, it can further be used to calculate the 14C age of ocean carbon reservoirs. Therefore, U-Th and 14C dating results of stony coral are currently the most reliable data for exploring the evolution of ocean carbon reservoirs through the Last Glacial Maximum to the present. It has been found that the 14C ventilation ages of intermediate water masses of the equatorial Atlantic and Southern Ocean significantly decreased at the end of the Heinrich Stadial 1. This suggests a massive carbon transfer from deep oceans to the atmosphere, or the Atlantic intermediate depths were ventilated by the southern- and the northern-sourced water masses, respectively, before and after the Heinrich Stadial 1.

参考文献

1 Robinson L F, Adkins J F, Frank N, et al. The geochemistry of deep-sea coral skeletons: A review of vital effects and applications for paleoceanography[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99:184-198.
2 Roark E B, Guilderson T, Dunbar R B, et al. Extreme longevity in proteinaceous deep-sea corals[J]. Proceedings of the National Academy of Sciences, 2009, 106(13): 5 204-5 208.
3 Cheng H, Adkins J, Edwards R L, et al. U-Th dating of deep-sea corals[J]. Geochimica et Cosmochimica Acta, 2000, 64(14): 2 401-2 416.
4 Lomitschka M, Mangini A. Precise Th/U-dating of small and heavily coated samples of deep-sea corals[J]. Earth and Planetary Science Letters, 1999, 170(4):391-401.
5 Burke A, Robinson L F, McNichol A, et al. Reconnaissance dating: A new radiocarbon method applied to assessing the temporal distribution of Southern Ocean deep-sea corals[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(11):1 510-1 520.
6 Adkins J F, Henderson G M, Wang S-L, et al. Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrate[J]. Earth and Planetary Science Letters, 2004, 227(3/4):481-490.
7 Andrews A H, Stone R P, Lundstrom C C, et al. Growth rate and age determination of bamboo corals from the northeastern Pacific Ocean using refined 210Pb dating[J]. Marine Ecology Progress Series, 2009, 397:173-185.
8 Sabatier P, J-L Reyss, Hall-Spencer J M, et al. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world’s largest cold-water coral reef[J]. Biogeosciences, 2012, 9(3):1 253-1 265.
9 Cochran J K, Livingston H D, Hirschberg D J, et al. Natural and anthropogenic radionuclide distributions in the northwest Atlantic Ocean[J]. Earth and Planetary Science Letters, 1987,84(2/3):135-152.
10 Guo L, Santschi P, Baskaran M, et al. Distribution of dissolved and particulate 230Th and 232Th in seawater from the Gulf of Mexico and off Cape Hatteras as measured by SIMS[J]. Earth and Planetary Science Letters,1995, 133(1/2):117-128.
11 Nozaki Y, Yang H-S, Yamada M. Scavenging of thorium in the ocean[J]. Journal of Geophysical Research, 1987, 92(C1): 772-778.
12 Roy-Barman M, Chen J H, Wasserburg G J. 230Th-232Th systematics in the central Pacific Ocean: The sources and fates of thorium[J]. Earth and Planetary Science Letters, 1996,139(3/4): 351-363.
13 Moore W S. The thorium isotope content of ocean water[J]. Earth and Planetary Science Letters, 1981, 53(3): 419-426.
14 Henderson G M. Seawater 234U/238U during the last 800 thousand years[J]. Earth and Planetary Science Letters, 2002, 199(1/2): 97-110.
15 Robinson L F, Adkins J F, Fernandez D P, et al. Primary U-distribution in scleractinian corals and its implications for U-series dating[J]. Geochemistry, Geophysics, Geosystems, 2006,7(5). DOI: 10.01029/02005GC001138.
16 Reimer P J, Baillie M G L, Bard E, et al. Intcal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP[J]. Radiocarbon, 2009, 51: 1 111-1 150.
17 Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1 869-1 887.
18 Wang N, Shen C D, Sun W D, et al. Penetration of bomb 14C into the deepest ocean trench[J]. Geophysical Research Letters, 2019, 46(10): 5 413-5 419.
19 Prouty N G, Roark E B, Andrews A H, et al. Age, growth rates and paleoclimate studies in deep-Sea corals of the United States[M]//Hourigan T F, Etnoyer P J, Cairns S D. The State of Deep-Sea Coral and Sponge Ecosystems of the United States. Silver Spring, 2017: 298-308.
20 Sherwood O A, Scott D B, Risk M J. Radiocarbon evidence for annual growth rings in a deep sea octocoral (Primnoa resedaeformis) [J]. Marine Ecology Progress Series, 2005, 301:129-134.
21 Andrews A H, Cordes E E, Mahoney M M, et al. Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska[J]. Hydrobiologia, 2002, 471(1):101-110.
22 Roark E B, Guilderson T P, Dunbar R B, et al. Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals[J]. Marine Ecology Progress Series, 2006, 327:1-14.
23 Parrish F A, Roark E B. Growth validation of gold coral Gerardia sp. in the Hawaiian Archipelago[J]. Marine Ecology Progress Series, 2009, 397:163-172.
24 Roark E B, Guilderson T P, Flood-Page S, et al. Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska[J]. Geophysical Research Letters, 2005, 32(4). DOI:10.1029/2004GL021919.
25 Hill T M, Spero H J, Guilderson T, et al. Temperature and vital effect controls on bamboo coral (Isididae) isotope geochemistry: A test of the ‘lines method’[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(4). DOI:10.1029/2010GC003443.
26 Saenger C, Watkins J M. A refined method for calculating paleotemperatures from linear correlations in bamboo coral carbon and oxygen isotopes[J]. Paleoceanography, 2016, 31(6): 789-799.
27 Petit R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature,1999, 399(6 735): 429-436.
28 Sigman D, Hain M P, Haug G H. The polar ocean and glacial cycles in atmospheric CO2 concentration[J]. Nature, 2010, 446(7 302): 47-55.
29 Monnin E, Indermuhle A, Dallenbach A, et al. Atmospheric CO2 concentrations over the last glacial termination[J]. Science, 2001, 291(5 501): 112-114.
30 Lemieux-Dudon B, Blayo E, J-R Petit, et al. Consistent dating for Antarctic and Greenland ice cores[J]. Quaternary Science Reviews, 2010, 29(19/20): 8-20.
31 Sigman D M, Boyle E A. Glacial/interglacial variations in atmospheric carbon dioxide[J]. Nature, 2000, 407(6 806): 859-869.
32 K?hler P, Fischer H, Munhoven G, et al. Quantitative interpretation of atmospheric carbon records over the last glacial termination[J]. Global Biogeochemical Cycles, 2005, 19(4). DOI:10.1029/2004GB002345.
33 Toggweiler J R. Variation of atmospheric CO2 by ventilation of the ocean's deepest water[J]. Paleoceanography, 1999, 14(5): 571-588.
34 Toggweiler J R, Russell J L, Carson S R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages[J]. Paleoceanography, 2006, 21(2). DOI:10.1029/2005PA00-1154.
35 Tschumi T, Joos F, Gehlen M, et al. Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise[J]. Climate of the Past, 2011, 7(3): 771-800.
36 Skinner L C, Fallon S, Waelbroeck C, et al. Ventilation of the deep southern ocean and deglacial CO2 rise[J]. Science, 2010, 328(5 982): 1 147-1 151.
37 Burke A, Robinson L F. The Southern Ocean’s role in carbon exchange during the last deglaciation[J]. Science, 2012, 335(6 068): 557-561.
38 Anderson R F, Ali S, Bradtmiller L I, et al. Wind driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2[J]. Science, 2009, 323(5 920):1 443-1 446.
39 Smith H J, Fischer H, Whalen M, et al. Dual modes of the carbon cycle since the Last Glacial Maximum[J]. Nature, 1999, 400(6 741): 248-250.
40 Schmitt J, Schneider R, Elsig J, et al. Carbon isotope constraints on the deglacial CO2 rise from ice cores[J]. Science, 2012, 336(6 082): 711-714.
41 Spero H J, Lea D W. The cause of carbon isotope minimum events on glacial terminations[J]. Science, 2002, 296(5 567): 522-525.
42 Broecker W S, Barker S. A 190‰ drop in atmosphere’s Δ14C during the “Mystery Interval” (17.5-14.5 kyr) [J]. Earth and Planetary Science Letters, 2007, 256(1):90-99.
43 Southon J, Noronha A L, Cheng H, et al. A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82[J]. Quaternary Science Reviews, 2012, 33:32-41.
44 Cheng H, Edwards R L, Southon J, et al. Atmosphere 14C/12C changes during the last glacial period from Hulu Cave[J]. Science, 2018, 362(6 420): 1 293-1 297.
45 Marchitto T M, Lehman S J, Ortiz J D, et al. Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise[J]. Science, 2007, 316(5 830):1 456-1 440.
46 Bryan S P, Marchitto T M, Lehman S J. The release of 14C-depleted carbon from the deep ocean during the last deglaciation: Evidence from the Arabian Sea[J]. Earth and Planetary Science Letters, 2010, 298(1): 244-254.
47 Thornalley D J R, Barker S, Broecker W, et al. The deglacial evolution of north Atlantic deep convection[J]. Science, 2011, 331(6 014): 202-205.
48 Stott L, Southon J, Timmermann A, et al. Radiocarbon age anomaly at intermediate water depth in the Pacific Ocean during the last deglaciation[J]. Paleoceanography, 2009, 24(2). DOI:10.1029/2008PA001690.
49 De Pol-Holz R, Keigwin L D, Southon J, et al. No signature of abyssal carbon in intermediate waters off Chile during deglaciation[J]. Nature Geoscience, 2010, 3(3): 192-195.
50 Mangini A, Godoy J M, Godoy M L, et al. Deep-sea corals off Brazil verify a poorly ventilated Southern Pacific Ocean during H2, H1 and the younger Dryas[J]. Earth and Planetary Science Letters, 2010, 293(3/4):269-276.
51 Rose K A, Sikes E L, Guilderson T P, et al. Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release[J]. Nature, 2010, 466(7 310): 1 093-1 097.
52 Cléroux C, deMenocal P, Guilderson T. Deglacial radiocarbon history of tropical Atlantic thermocline waters: Absence of CO2 reservoir purging signal[J]. Quaternary Science Reviews, 2011, 30(15): 1 875-1 882.
53 Sortor R N, Lund D C. No evidence for a deglacial intermediate water Δ14C anomaly in the SW Atlantic[J]. Earth and Planetary Science Letters, 2011, 310(1): 65-72.
54 Barker S, Broecker W, Clark E, et al. Radiocarbon age offsets of foraminifera resulting from differential dissolution and fragmentation within the sedimentary bioturbated zone[J]. Paleoceanography, 2007, 22(2). DOI:10.1029/2006PA001354.
55 Sarnthein M, Grootes P M, Kennett J P, et al. ^ 1^ 4C reservoir ages show deglacial changes in ocean currents and carbon cycle[J]. Geophysical Monograph-American Geophysical Union, 2007, 173: 175.
56 Franke J, Paul A, Schulz M. Modeling variations of marine reservoir ages during the last 45000 years[J]. Climate of the Past, 2008, 4(1): 125-136.
57 Key R M, Kozyr A, Sabine C L, et al. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP)[J]. Global Biogeochemical Cycles, 2004,18(4). DOI:10.1029/2004GB002247.
58 Chen T Y, Robinson L F, Burke A, et al. Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation[J]. Science, 2015, 349(6 255): 1 537-1 540.
59 Barker S, Knorr G, Vautravers M J, et al. Extreme deepening of the Atlantic overturning circulation during deglaciation[J]. Nature Geosciences, 2010, 3(8):567-571.
文章导航

/