深水珊瑚研究进展

深水珊瑚林

  • 汪品先
展开
  • 同济大学海洋地质国家重点实验室, 上海 200092
汪品先(1936-),男,江苏苏州人,教授,中国科学院院士,主要从事海洋地质与古环境研究. E-mail:pxwang@tongji.edu.cn

收稿日期: 2019-10-25

  修回日期: 2019-11-20

  网络出版日期: 2020-02-12

Deep-Sea Coral Forest

  • Pinxian Wang
Expand
  • State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
Wang Pinxian (1936-), male, Suzhou City, Jiangsu Province, Professer, Academician of Chinese Academy of Sciences. Research areas include marine geology and palaeoenvironment. E-mail:pxwang@tongji.edu.cn

Received date: 2019-10-25

  Revised date: 2019-11-20

  Online published: 2020-02-12

摘要

2018年在南海发现的深水珊瑚林,为底栖生物乃至碳循环研究弥补了重大空缺。受技术限制,以前深海底栖生物的研究主要局限在沉积覆盖的软基底,以为石质海底是一片贫瘠世界。1990年代中期,应用深潜技术首先在大西洋发现了深海珊瑚礁,为海洋科学开辟了新的研究方向。深海珊瑚包括两类:一类是属于六方珊瑚的石珊瑚,以其文石质的外骨骼形成珊瑚礁;另一类是以柳珊瑚为主的珊瑚林,柳珊瑚属于八方珊瑚,可以形成高镁方解石的骨骼。这些碳酸盐骨骼都能够记录深海的环境变化,是古海洋学研究的绝佳材料。太平洋由于文石补偿面过浅,不利于深水珊瑚礁发育,深水珊瑚林应当普遍发育,可惜至今尚未得到重视,绝大部分海域属于研究空白。通过对深水珊瑚礁和珊瑚林的组成以及分布的介绍,讨论深水珊瑚林在海洋生态学中的重要性及其在古海洋学再造中的意义。

本文引用格式

汪品先 . 深水珊瑚林[J]. 地球科学进展, 2019 , 34(12) : 1222 -1233 . DOI: 10.11867/j.issn.1001-8166.2019.12.1222

Abstract

The discovery of deep sea coral forests in the spring of 2018 filled a significant gap in the benthos research and even in carbon cycling in the South China Sea. Previously, the researches of deep-sea benthos were restricted to the sediment-covered soft bottom due to the technical limitations, and the rocky hard bottom was believed to be barren of life. Using submersible technique in the mid-1990s, deep-water coral reefs were first discovered in the Atlantic Ocean, which opened a new research direction in marine sciences. Two groups of deep sea corals have been recognized: scleractinian hexacorals and gorgonian octocorals. The aragonite skeleton of the former group build up deep sea coral reefs, while the latter make up deep sea coral forests with high-Mg calcite skeleton in many gorgonian corals. All kinds of carbonate coral skeletons can record environment changes of the deep sea and provide excellent material for high-resolution paleoceanography. Although the development of deep sea coral reefs in the Pacific Ocean is hampered by its extremely shallow aragonite compensation depth, deep sea coral forests are ubiquitous in the ocean. Up to now, most parts of the Pacific have not yet explored in this respect, and deep sea corals remain outside the research scope. The present paper is a literature review and calls for attention to the deep sea forests. It starts with the composition and distribution of deep sea coral reefs and forests, followed by discussions on the significance of deep sea coral forests in marine ecology and in paleoceanographic reconstructions.

参考文献

1 Li J R, Wang P X. Discovery of deep-water bamboo coral forest in the South China Sea [J]. Scientific Reports, 2019, 9:15 453. DOI:10.1038/s41598-019-51797-3.
2 Gage J D. Benthic biodiversity across and along the continental margin: Patterns, ecological and historical determinants, and Anthropogenic threats [C]// Wefer G, Billett G, Hebbeln D, et al. Ocean Margin Systems.Springer-Verlag, 2002:307-321.
3 Taviani M, Angeletti L,Canese S, et al. The “Sardinian cold-water coral province” in the context of the Mediterranean coral ecosystems [J]. Deep-Sea Research II: Topical Studies in Oceangraphy, 2017. DOI: 10.1016/j.dsr2.2015.12.008.
4 Lavaleye M, Duineveld G, Bergman M, et al. Long-term baited lander experiments at a cold-water coral community on Galway Mound (Belgica Mound Province, NE Atlantic) [J]. Deep-Sea Rresearch II: Topical Studies in Oceangraphy, 2017, 145: 22-32.
5 Hovland M, Mortensen P B, Brattegard T, et al. Ahermatypic coral banks off mid-Norway: Evidence for a link with seepage of light hydrocarbons [J]. Palaios, 1998, 13:189-200.
6 Arnaud-Haond S, van den Beld I M J, Becheler R, et al. Two pillars of cold-water coral reefs along Atlantic European margins: Prevalent association of Madrepora oculata with Lophelia pertusa, from reef to colony scale [J]. Deep-Sea Research II: Topical Studies in Oceangraphy, 2017, 145: 110-119.
7 Freiwald A, Fossa J H, Grehan A, et al. Cold-Water Coral Reefs: Out of Sight—No Longer Out of Mind [R]. UNEP-WCMC Biodiversity Series 22, 2004.
8 Riding R. Structure and composition of organic reefs and carbonate mud mounds: Concepts and categories[J]. Earth-Science Reviews, 2002, 58:163-231.
9 Roberts J M, Wheeler A J, Freiwald A. Reefs of the deep: The biology and geology of cold-water coral ecosystem [J]. Science, 2006, 312:543-547.
10 Roberts J M, Wheeler A, Freiwald A, et al. Cold-Water Corals:The Biology and Geology of Deep-Sea Coral Habitats [M]. Cambridge: Cambridge University Press, 2009.
11 Wienberg C, Titschack J, Freiwald A, et al. The giant Mauritanian cold-water coral mound province: Oxygen control on coral mound formation [J]. Quaternary Science Reviews, 2018,185: 135-152.
12 Paull C K, Neumann A C, am Ende B A, et al. Lithoherms on the Florida-Hatteras slope [J]. Marine Geology, 2000, 166: 83-101.
13 Berger W H. Deep-sea carbonate: Pteropod distribution and the aragonite compensation depth [J]. Deep Sea Research, 1978, 25(5): 447-452.
14 Cairns S D. A brief history of taxonomic research on azooxanthellate Scleractinia (Cnidaria: Anthozoa)[J]. Bulletin of the Biological Society of Washington, 2001, 10: 191-203.
15 Cairns S D. Deep-water corals: An overview with special reference to diversity and distribution of deep-water scleractinian corals[J]. Bulletin of Marine Science, 2007, 81(3):311-322.
16 Roberts J M, Cairns S D. Cold-water corals in a changing ocean [J]. Current Opinion in Environmental Sustainability, 2014, 7:118-126.
17 France S C. Genetic analysis of bamboo corals (Cnidaria: Octocorallia: Isididae): Does lack of colony branching distinguishing Lepidisis from Keratoisis?[J].Bulleting of Marine Science, 2007, 81(3): 323-333.
18 Neves B M, Edinger E, Hillaire-Marcel C, et al. Deep-water bamboo coral forests in a muddy Arctic environment [J]. Marine Biodiversity, 2015, 45:867-871.
19 Song J-I, S-J Hwang, Moon H, et al. Taxonomic study of suborder calcaxonia (Alcyonacea: Octocorallia: Anthozoa) from King Sejong Station, Antarctic [J]. Animal Systematics, Evolution and Diversity, 2012, 28(2): 84-96.
20 Stone R P. Coral habitat in the Aleutian Islands of Alaska: Depth distribution, fine-scale species associations, and fisheries interactions [J]. Coral Reefs, 2006, 25: 229-238.
21 Mortensen P B, Buhl-Mortensen L. Morphology and growth of the Deep-water gorgonians Primnoa resedaeformis and Paragorgia arborea [J]. Marine Biology, 2005, 147(3): 775-788.
22 Tittensor D P, Baco A R, Brewin P E, et al. Predicting global habitatsuitability for stony corals on seamounts[J]. Journal of Biogeography, 2009, 36:1 111-1 128.
23 De Leo F C, Smith C R, Rowden A A, et al. Submarine canyons: Hotspots of benthic biomass and productivity in the deep sea [J]. Proceedings of the Royal Society B: Biological Sciences, 2010, 277: 2 783-2 792. DOI: 10.1098/rspb.2010.0462.
24 Frutos I, Brandt A, Sorbe J C. Deep-sea suprabenthic communities: The forgotten biodiversity [C] // Rossi S, Bramanti L, Gori A,et al. Marine Animal Forests. The Ecology of Benthic Biodiversity Hotspots. Springer, 2017:475-503.
25 Maldonado M, Aguilar R, Bannister R J, et al. Sponge grounds as key marine habitats: A synthetic review of types, structure, functional roles, and conservation concerns[C]// Rossi S, Bramanti L, Gori A, et al. Marine Animal Forests. The Ecology of Benthic Biodiversity Hotspots. Springer, 2017:145-183.
26 Rossi S, Bramanti L, Gori A,et al. Animal forests of the world: An overview [C] // Rossi S, Bramanti L, Gori A, et al. Marine Animal Forests. The Ecology of Benthic Biodiversity Hotspots. Springer, 2017:1-28.
27 Etnoyer P J. Box 7: Deep-sea corals on seamounts [J]. Oceanography, 2010, 23(1):128-129. DOI:10.5670/oceanog.2010.91.
28 Arntz W E. Marine animal forests: Foreword [C] // Rossi S, Bramanti L, Gori A, et al. Marine Animal Forests. The Ecology of Benthic Biodiversity Hotspots. Springer, 2017:vii-x.
29 Guizien K, Ghisalberti M. Living in the Canopy of the animal forest: Physical and biogeochemical aspects [C]//Rossi S, Bramanti L, Gori A, et al. Marine Animal Forests. The Ecology of Benthic Biodiversity Hotspots. Springer, 2017:507-528.
30 Narbonne G M, Laflamme M, Greentree C, et al. Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard’s Bay, Newfoundland [J]. Journal of Paleontology, 2009, 83: 503-523.
31 Ghisalberti M, Gold D A, Laflamme M, et al. Canopy flow analysis reveals the advantage of size in the oldest communities of multicellular eukaryotes [J]. Current Biology, 2014, 24: 305-309.
32 Sherwood O A, Heikoop J M, Sinclair D J, et al. Skeletal Mg/Ca in Primnoa resedaeformis: Relationship to temperature?[C]// Freiwald A, Roberts J M. Cold-water Corals and Ecosystems. Springer-Verlag, 2005:1 061-1 079.
33 Roark E B, Guilderson T P, Flood-Page S, et al. Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska [J]. Geophysical Research Letters, 2005, 32:L04606.DOI:10.1029/2004GL021919.
34 Roberts J M, Brown C J, Long D, et al. Acoustic mapping using a multibeam echosounder reveals cold-water coral reefs and surrounding habitats [J]. Coral Reefs, 2005, 24: 654-669.
35 Ferdelman T G, Kano A, Williams T, et al. IODP Expedition 307 Drills cold-water coral mound along the irish continental margin [J]. Scientific Drilling, 2006,(2): 11-16.
36 Kano A, Ferdelman T G, Williams T. The pleistocene cooling built challenger mound, a deep-water coral mound in the NE Atlantic: Synthesis from IODP Expedition 307[J]. The Sedimentary Records, 2010, 8(4):4-9.
37 Li Xianghui, Chen Yunhua, Xu Baoliang, et al. A review of cenozoic deep sea cold-water carbonate mounds and preliminary results of carbon and oxygen isotopes from IODP 307[J]. Advances in Earth Science, 2007, 22(7): 666-672.
37 李祥辉,陈云华,徐宝亮,等. 新生代深海冷水碳酸盐泥丘成因及IODP 307航次初步研究结果[J]. 地球科学进展, 2007, 22(7): 666-672.
38 Feary D A, Hine A C, Malone M J, et al. Great Australian Bight: Cenozoic Coolwater Carbonates [R]. Proceedings of the Ocean Drilling Program, Initial Reports, 2000: 182.
39 James N P, Feary D A, Betzler C, et al. Origin of Late Pleistocene Bryozoan Reef Mounds: Great Australian Bight [J]. Journal of Sedimentary Research, 2004, 74(1):20-48.
40 Guinotte J M, Orr J, Cairns S, et al. Will human‐induced changes in seawater chemistry alter the distribution of deep‐sea scleractinian corals?[J]. Frontiers in Ecology and the Environment, 2006, 4:141-146.
41 Frank N, Freiwald A, Lopez Correa M, et al. Northeastern Atlantic cold-water coral reefs and climate [J]. Geology, 2011, 39:743-746.
42 Hourigan T F, Etnoyer P J, Cairns S D. The State of Deep‐Sea Coral and Sponge Ecosystems of the United States [R]. NOAA Technical Memorandum NMFS‐OHC‐4. Silver Spring, MD, 2017:467.]
43 Mienis F, van Weering T C E. Introduction: Proceedings ISDSC5 [J]. Deep-Sea Research II: Topical Studies in Oceangraphy, 2013, 99: 1-5.
44 Edinger E N, Sherwood O A, Piper D J W, et al. Geological features supporting deep-sea coral habitat in Atlantic Canada [J]. Continental Shelf Research, 2011, 31: S69-S84.
文章导航

/