研究论文

南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析

  • 王萌 ,
  • 张艳伟 ,
  • 刘志飞 ,
  • 吴家望
展开
  • 同济大学海洋地质国家重点实验室,上海 200092
王萌(1988-),女,陕西安康人,博士研究生,主要从事南海中尺度涡与深水动力研究. E-mail:wmeng_21212@163.com

收稿日期: 2019-08-02

  修回日期: 2019-09-15

  网络出版日期: 2019-12-09

基金资助

国家自然科学基金面上项目“中尺度涡对南海东北部深层湍流混合的影响”(41576005);国家自然科学基金重点项目“南海中央海盆中新世以来深水沉积作用及其区域构造与环境演化意义”(41530964)

Temporal and Spatial Characteristics of Mesoscale Eddies in the Northern South China Sea: Statistics Analysis Based on Altimeter Data

  • Meng Wang ,
  • Yanwei Zhang ,
  • Zhifei Liu ,
  • Jiawang Wu
Expand
  • State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

Received date: 2019-08-02

  Revised date: 2019-09-15

  Online published: 2019-12-09

Supported by

the National Natural Science Foundation of China “Influence of mesoscale eddies on the deepwater turbulent mixing in the South China Sea” (No.41576005) and “Deepwater sedimentation since the Miocene in the Central Basin of the South China Sea and its regional tectonic and environmental evolution significance” (No.41530964).First author: Wang Meng(1988-)

摘要

中尺度涡在南海活动频繁,尤其是持续时间长的强中尺度涡对海区内多尺度环流系统的能量输送和物质搬运具有重要调控作用。利用AVISO卫星高度计资料和最外层闭合等值线法,对2011—2018年南海北部的中尺度涡进行识别和追踪,重点讨论中尺度涡在最近几年的时空分布变化。统计结果显示,南海北部平均每年生成8.6个反气旋涡和4.5个气旋涡(持续时间大于28天),其中近1/3为强中尺度涡(持续时间大于45天),表现出较强的涡动能和非线性等动力特征,基本与前人统计的其他年份结果一致。南海北部中尺度涡的生成地点、传播路径以及活动频率分布具有显著的季节变化特征。对比发现,反气旋涡在秋季和冬季主要形成于吕宋海峡北侧,沿等深线向西南移动,最高活动频率超过30%;夏季主要在菲律宾吕宋岛西侧形成,平行于纬线向西移动。而气旋涡在冬季和春季主要形成于吕宋海峡西侧,向西南移动,最高活动频率约为26%。另外,台湾岛西南岸外易生成强中尺度涡涡对,综合黑潮指数进一步分析发现,黑潮入侵南海形成流套是促使该强涡对生成的主要机制。

本文引用格式

王萌 , 张艳伟 , 刘志飞 , 吴家望 . 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019 , 34(10) : 1069 -1080 . DOI: 10.11867/j.issn.1001-8166.2019.10.1069

Abstract

Mesoscale eddies are active and energetic in the South China Sea (SCS), and play an important role in regulating the multi-scale circulation and mass transportation in the region, especially for those long-lived strong eddies. Using AVISO altimeter data and outermost closed contour sea level anomaly method, this study identified and tracked mesoscale eddies in the northern SCS during 2011-2018, and focused on the temporal and spatial characteristics of mesoscale eddies in recent years. Similarly to previous results in this region, statistical results show that about 8.6 anticyclonic eddies and 4.5 cyclonic eddies (lifetime > 28 days) were born per year. Among them, about 1/3 of the total number are strong eddies (lifetime > 45 days), showing relatively strong dynamic characteristics, such as strong Eddy Kinetic Energy (EKE) and highly nonlinear feature. Statistics also show significant seasonal variability in mesoscale eddies’ birth places, trajectories and distribution of frequency of occurrence. Specifically, anticyclonic eddies mainly form at the north part of Luzon Strait between autumn and winter, and then move southwestward along isobaths. During this period, the largest value of the frequency of occurrence is over 30%. In summer, most of them form in the west off Luzon Island, and then move westward paralleling to latitude lines. In contrast, cyclonic mainly form in the west off Luzon Strait, and then move westward in winter and spring. During this period, the largest value is about 26%. In addition, observation finds that the strong mesoscale eddy pair could generate off the southwest of Taiwan Island. Analysis of the Kuroshio SCS Index (KSI) implies that loop current caused by Kuroshio intrusion is the most important mechanism for the formation of eddy pair.

参考文献

1 Rossby T, Flagg C, Ortner P, et al. A tale of two eddies: Diagnosing coherent eddies through acoustic remote sensing[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12).DOI: 10.1029/2011JC007307.
2 de Jong M F, Bower A S, Furey H H. Two years of observations of warm-core anticyclones in the Labrador Sea and their seasonal cycle in heat and salt stratification[J]. Journal of Physical Oceanography, 2014, 44(2): 427-444.
3 Chelton D B, Schlax M G, Samelson R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216.
4 Sheen K L, Brearley J A, Naveira Garabato A C, et al. Modification of turbulent dissipation rates by a deep southern ocean eddy[J]. Geophysical Research Letters, 2015, 42(9): 3 450-3 457.
5 Shu Y, Xue H, Wang D, et al. Persistent and energetic bottom-trapped topographic Rossby waves observed in the southern South China Sea[J]. Scientific Reports, 2016, 6: 24 338.
6 Yang Q, Zhou L, Tian J, et al. The roles of Kuroshio intrusion and mesoscale eddy in upper mixing in the northern South China Sea[J]. Journal of Coastal Research, 2013, 30(1): 192-198.
7 Mcwilliams J C. The nature and consequences of oceanic eddies[J]. Geophysical Monograph Series, 2008, 177: 5-15.
8 Spall M A. On the role of eddies and surface forcing in the heat transport and overturning circulation in marginal seas[J]. Journal of Climate, 2011, 24(18): 4 844-4 858.
9 Zhang Z, Wang W, Qiu B. Oceanic mass transport by mesoscale eddies[J]. Science, 2014, 345(6 194): 322-324.
10 Wu C, Chiang T. Mesoscale eddies in the northern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(14): 1 575-1 588.
11 Yuan D, Han W, Hu D. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11). DOI: 10.1029/2005JC003412.
12 Metzger E J, Hurlburt H E. The nondeterministic nature of Kuroshio penetration and eddy shedding in the South China Sea[J]. Journal of Physical Oceanography, 2001, 31(7): 1 712-1 732.
13 Caruso M J, Gawarkiewicz G G, Beardsley R C. Interannual variability of the Kuroshio intrusion in the South China Sea[J]. Journal of Oceanography, 2006, 62(4): 559-575.
14 Chen G, Hou Y, Chu X, et al. Vertical structure and evolution of the Luzon warm eddy[J]. Chinese Journal of Oceanology and Limnology, 2010, 28(5): 955-961.
15 Li L, Nowlin Jr W D, Su J. Anticyclonic Rings from the Kuroshio in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1998, 45(9): 1 469-1 482.
16 Xue H, Chai F, Pettigrew N, et al. Kuroshio Intrusion and the Circulation in the South China Sea[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2).DOI: 10.1029/2002JC001724.
17 Chen R, Flierl G R, Wunsch C. A description of local and nonlocal eddy-mean flow interaction in a global eddy-permitting state estimate[J]. Journal of Physical Oceanography, 2014, 44(9): 2 336-2 352.
18 Yuan D, Han W, Hu D. Anti-cyclonic eddies northwest of Luzon in summer-fall observed by satellite altimeters[J]. Geophysical Research Letters, 2007, 34(13): L13610. DOI: 10.1029/2007GL029401.
19 Nan F, He Z, Zhou H, et al. Three long-lived anticyclonic eddies in the northern South China Sea[J]. Geophysical Research: Oceans, 2011, 116: C05002.DOI:10.1029/2010JC006790.
20 Zheng Q, Hu J, Zhu B, et al. Standing wave modes observed in the South China Sea deep basin[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4 185-4 199.
21 Liu Q, Kaneko A, Su J. Recent progress in studies of the South China Sea circulation[J]. Journal of Oceanography, 2008, 64(5): 753-762.
22 Tian Jiwei, Qu Tangdong. Advances in research on the deep South China Sea circulation[J]. Chinese Science Bulletin, 2012, 57(20): 1 827-1 832.
22 田纪伟, 曲堂栋. 南海深海环流研究进展[J]. 科学通报, 2012, 57(20): 1 827-1 832.
23 Wang G, Su J, Chu P. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophysical Research Letters, 2003, 30(21). DOI:10.1029/2003GL018532.
24 Xiu P, Chai F, Shi L, et al. A census of eddy activities in the South China Sea during 1993-2007[J]. Journal of Geophysical Research: Oceans, 2010, 115(C3). DOI: 10.1029/2009JC005657.
25 Chen G, Hou Y, Chu X. Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure[J]. Journal of Geophysical Research: Oceans, 2011, 116(C6). DOI: 10.1029/2010JC006716.
26 Lin Pengfei, Wang Fan, Chen Yongli, et al. Temporal and spatial variation characteristics on eddies in the South China Sea. I. Statistical analyses[J]. Acta Oceanologica Sinica, 2007, 29(3): 14-22.
26 林鹏飞, 王凡, 陈永利, 等. 南海中尺度涡旋的时空特征: I. 统计分析[J]. 海洋学报, 2007, 29 (3): 14-22.
27 Nan F, Xue H, Xiu P, et al. Oceanic eddy formation and propagation southwest of Taiwan[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12). DOI:10.1029/2011JC007386.
28 Wang X, Li W, Qi Y, et al. Heat, salt and volume transports by eddies in the vicinity of the Luzon Strait[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 61: 21-33.
29 Feng B, Liu H, Lin P, et al. Meso-scale eddy in the South China Sea simulated by an eddy-resolving ocean model[J]. Acta Oceanologica Sinica, 2017, 36(5):9-25.
30 Wang L, Koblinsky C J, Howden S. Mesoscale variability in the South China Sea from the Topex/Poseidon altimetry data[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2000, 47(4): 681-708.
31 Du Y, Yi J, Wu D, et al. Mesoscale oceanic eddies in the South China Sea from 1992 to 2012:Evolution processes and statistical analysis[J]. Acta Oceanologica Sinica, 2014, 33(11): 36-47.
32 Lin X, Dong C, Chen D, et al. Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2015, 99: 46-64..
33 Souza J, de Boyer-Montégut C, Le Traon P-Y. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean[J]. Ocean Science, 2011, 7(3): 317-334.
34 Chelton D B, de Szoeke R A, Schlax M G, et al. Geographical variability of the first baroclinic Rossby radius of deformation[J]. Journal of Physical Oceanography, 1998, 28(3): 433-460.
35 Ducet N, Le Traon P-Y. Reverdin G. Global high‐resolution mapping of ocean circulation from Topex/Poseidon and Ers-1 and-2[J]. Journal of Geophysical Research: Oceans, 2000, 105(C8): 19 477-19 498.
36 Chaigneau A, Gizolme A, Grados C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns[J]. Progress in Oceanography, 2008, 79(2): 106-119.
37 Fu L L. Pattern and velocity of propagation of the global ocean eddy variability[J]. Journal of Geophysical Research: Oceans, 2009, 114(C11). DOI: 10.1029/2009JC005349.
38 Faghmous J H, Frenger I, Yao Y, et al. A daily global mesoscale ocean eddy dataset from satellite altimetry[J]. Scientific Data, 2015, 2: 150 028.
39 Zhang Y, Liu Z, Zhao Y, et al. Mesoscale eddies transport deep-sea sediments[J]. Scientific Reports, 2014, 4: 5 937.
40 Zhang Y, Liu Z, Zhao Y, et al. Effect of surface mesoscale eddies on deep-sea currents and mixing in the northeastern South China Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2015, 122: 6-14.
41 Wang M, Zhang Y, Liu Z, et al. Temporal and spatial evolution of a deep-reaching anticyclonic eddy in the South China Sea[J]. Scinece in China(Series D),2019, 62: 1 002-1 023.
42 Wang G, Chen D, Su J. Winter eddy genesis in the eastern South China Sea due to orographic wind jets[J]. Journal of Physical Oceanography, 2008, 38(3): 726-732.
43 Zu T, Gan J, Erofeeva S Y. Numerical study of the tide and tidal dynamics in the South China Sea[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2008, 55(2): 137-154.
44 Qu T. Upper-layer circulation in the South China Sea[J]. Journal of Physical Oceanography, 2000, 30(6): 1 450-1 460.
45 Wunsch C. The past and future ocean circulation from a contemporary perspective[M]// Ocean Circulation: Mechanisms and Impacts-past and Future Changes of Meridional Overturning. Washington D C: AGU, 2007: 53-74.
46 Jouanno J, Sheinbaum J, Barnier B, et al. Seasonal and interannual modulation of the eddy kinetic energy in the Caribbean Sea[J]. Journal of Physical Oceanography, 2012, 42(11): 2 041-2 055.
47 Nan F, Xue H, Chai F, et al. Identification of different types of Kuroshio intrusion into the South China Sea[J]. Ocean Dynamics, 2011, 61(9): 1 291-1 304.
48 Nan F, Xue H, Yu F. Kuroshio intrusion into the South China Sea: A review[J]. Progress in Oceanography, 2015, 137: 314-333.
49 Huang Z, Liu H, Hu J, et al. A double-index method to classify Kuroshio intrusion paths in the Luzon Strait [J]. Advances in Atmospheric Sciences, 2016, 33(6): 715-729.
50 Hu S, Fedorov A. Exceptionally strong easterly wind burst stalling El Ni?o of 2014[J]. Proceedings of the National Academy of Sciences, 2016, 113(8): 2 005-2 010.
51 Levine A, McPhaden M. How the July 2014 easterly wind burst gave the 2015-2016 El Ni?o a head start[J]. Geophysical Research Letters, 2016, 43(12): 6 503-6 510.
文章导航

/