综述与评述

海洋微塑料源汇搬运过程的研究进展

  • 张晓栋 ,
  • 刘志飞 ,
  • 张艳伟 ,
  • 赵玉龙
展开
  • 同济大学海洋地质国家重点实验室,上海 200092
张晓栋(1992-),男,山东泰安人,博士研究生,主要从事深海沉积搬运过程观测研究. E-mail:zhangxiaodong@tongji.edu.cn

收稿日期: 2019-06-19

  修回日期: 2019-08-10

  网络出版日期: 2019-11-15

基金资助

国家自然科学基金重大研究计划集成项目“南海深海沉积过程与机制”(91528304);国家重点研发计划项目“南海南部巽他陆架沉积古环境演变”(2018YFE0202402)

Research Progress on Source-to-Sink Transport Processes of Marine Microplastics

  • Xiaodong Zhang ,
  • Zhifei Liu ,
  • Yanwei Zhang ,
  • Yulong Zhao
Expand
  • State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
Zhang Xiaodong (1992-), male, Taian City, Shandong Province, Ph.D student. Research areas include observation on deep-sea sedimentation and transport process. E-mail:zhangxiaodong@tongji.edu.cn

Received date: 2019-06-19

  Revised date: 2019-08-10

  Online published: 2019-11-15

Supported by

the National Natural Science Foundation of China “Deep-sea sedimentation process and mechanism in the South China Sea”(91528304);The National Key Research and Development Program of China “Evolution of sedimentary environment and paleoclimate of the Sunda shelf in southern South China Sea”(2018YFE0202402)

摘要

海洋微塑料是全球性的环境问题和挑战,受到了国际社会的广泛关注。然而,现阶段研究主要集中在调查海洋表层微塑料丰度及生态效应,对深海环境中微塑料的分布和沉积搬运过程认识不足。通过总结近10年海洋微塑料的相关研究,综述了海洋微塑料来源、分布以及从源到汇的搬运过程。实地调查表明,海洋表层和水柱都是海洋微塑料的重要聚集区,而深海表层沉积物却是海洋微塑料最终沉积聚集的汇。海洋微塑料搬运到深海沉积汇的过程包括2种方式:垂向沉降和侧向搬运。实验室模拟表明,海洋中微塑料颗粒沉降速率为300~1 000 m/d,沉降过程除了受控于颗粒密度等物理学性质外,还受海洋动力过程、生物作用和海洋雪聚集等因素的影响。沉积在海底的微塑料则可以随再悬浮沉积物向深海侧向运移,该过程与内波、深海浊流或气候事件等因素有关。但是,微塑料向深海搬运的速率和数量等问题远未解决,不利于全面理解海洋微塑料从源到汇的搬运和沉积过程。因此,建议利用分层沉积物捕集器原位观测微塑料的沉降通量,以便开展深海微塑料源汇搬运过程研究。

本文引用格式

张晓栋 , 刘志飞 , 张艳伟 , 赵玉龙 . 海洋微塑料源汇搬运过程的研究进展[J]. 地球科学进展, 2019 , 34(9) : 936 -949 . DOI: 10.11867/j.issn.1001-8166.2019.09.0936

Abstract

Microplastics in marine environment are global environmental issue and challenge and have received an extensive international concern. At present, most of researches focus on the investigation of microplastic abundance in the ocean surface water, and there is insufficient understanding of the distribution and transport processes of microplastics in the deep-sea environment. This paper reviewed marine microplastic studies carried out in the last decade, and summarized the source, global distribution and transport processes of microplastics. Field investigations showed that both surface water and water column were important accumulation areas for microplastics, while deep-sea surface sediments were final sinks for microplastic deposition and accumulation. Transport of microplastics to the deep sea included two modes: vertical settlement and lateral transport. Laboratory simulation showed that the sinking rate of microplastic particles in the ocean changed between 300 and 1 000 meters per day, and the sinking process was not solely controlled by particle physical properties such as particle density, but also influenced by ocean dynamic process, biological action and marine snow aggregation. Microplastics deposited on the seafloor could migrate laterally towards the deep sea with resuspended sediments, which were related to internal waves, deep-sea turbidity current or climatic events. However, there remain the key knowledge gaps in uncertain speed and quantity of microplastics moving to the deep sea, which is not conducive to the comprehensive understanding of the microplastic transport process from source to sink. Therefore, it is recommended to observe the vertical sinking flux of microplastics with layered sediment traps in order to study the source-to-sink transport processes of microplastics in deep-sea environment.

参考文献

1 GeyerR, JambeckJ R, LawK L. Production, use, and fate of all plastics ever made [J]. Science Advances, 2017, 3(7): e1700782.
2 JambeckJ R., GeyerR, WilcoxC, et al. Plastic waste inputs from land into the ocean [J]. Science, 2015, 347(6 223): 768-771.
3 ArthurC, BakerJ, BamfordH. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris[C]. Washington: NOAA Marine Debris Division, 2009.
4 AlimiO S, Farner BudarzJ, HernandezL M, et al. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport [J]. Environmental Science & Technology, 2018, 52(4): 1 704-1 724.
5 CarpenterE J, AndersonS J, HarveyG R, et al. Polystyrene spherules in coastal waters [J]. Science, 1972, 178(4 062): 749-750.
6 ThompsonR C, OlsenY, MitchellR P, et al. Lost at sea: Where is all the plastic?[J]. Science, 2004, 304(5 672): 838.
7 van CauwenbergheL, VanreuselA, MeesJ, et al. Microplastic pollution in deep-sea sediments [J]. Environmental Pollution, 2013, 182: 495-499.
8 WoodallL C, Sanchez-VidalA, CanalsM, et al. The deep sea is a major sink for microplastic debris [J]. Royal Society Open Science, 2014, 1(4): 140 317.
9 FischerV, ElsnerN O, BrenkeN, et al. Plastic pollution of the Kuril-Kamchatka Trench area (NW Pacific) [J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 111: 399-405.
10 BergmannM, WirzbergerV, KrumpenT, et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory [J]. Environmental Science & Technology, 2017, 51(19): 11 000-11 010.
11 PengX, ChenM, ChenS, et al. Microplastics contaminate the deepest part of the world’s ocean [J]. Geochemical Perspectives Letters, 2018, 9: 1-5.
12 AndradyA L. Microplastics in the marine environment [J]. Marine Pollution Bulletin, 2011, 62(8): 1 596-1 605.
13 ColeM, LindequeP, HalsbandC, et al. Microplastics as contaminants in the marine environment: A review [J]. Marine Pollution Bulletin, 2011, 62(12): 2 588-2 597.
14 GagoJ, CarreteroO, FilgueirasA V, et al. Synthetic microfibers in the marine environment: A review on their occurrence in seawater and sediments [J]. Marine Pollution Bulletin, 2018, 127: 365-376.
15 Group of Experts on the Scientific Aspects of Marine Pollution. The State of the Marine Environment [M]. London: Blackwell Scientific Publications, 1991.
16 SheavlyS B, RegisterK M. Marine debris & plastics: Environmental concerns, sources, impacts and solutions [J]. Journal of Polymers and the Environment, 2007, 15(4): 301-305.
17 BowmerT, KershawP. Proceedings of the GESAMP International Workshop on Microplastic Particles as a Vector in Transporting Persistent, Bio-accumulating and Toxic Substances in the Ocean [C]. Paris:UNESCO-IOC, 2010.
18 LebretonL C M, Van der ZwetJ, DamsteegJ W, et al. River plastic emissions to the world’s oceans [J]. Nature Communications, 2017, 8: 15 611.
19 SchmidtC, KrauthT, WagnerS, et al. Export of plastic debris by rivers into the sea [J]. Environmental Science & Technology, 2017, 51(21): 12 246-12 253.
20 ZhaoS, ZhuL, WangT, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution [J]. Marine Pollution Bulletin, 2014, 86(1/2): 562-568.
21 FokL, CheungP K. Hong Kong at the Pearl River Estuary: A hotspot of microplastic pollution [J]. Marine Pollution Bulletin, 2015, 99(1/2): 112-118.
22 CaiM, HeH, LiuM, et al. Lost but can't be neglected: Huge quantities of small microplastics hide in the South China Sea [J]. Science of the Total Environment, 2018, 633: 1 206-1 216.
23 EriksenM, LebretonL C M, CarsonH S, et al. Plastic pollution in the world's oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea [J]. PLoS ONE, 2014, 9(12): e111913.
24 van SebilleE, WilcoxC, LebretonL C M, et al. A global inventory of small floating plastic debris [J]. Environmental Research Letters, 2015, 10(12): 124 006.
25 LebretonL C M, SlatB, FerrariF, et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic [J]. Scientific Reports, 2018, 8(1): 4 666.
26 LawK L, Morét-FergusonS, MaximenkoN A, et al. Plastic accumulation in the North Atlantic subtropical gyre [J]. Science, 2010, 329(5 996): 1 185-1 188.
27 LawK L, More?t-FergusonS E, GoodwinD S, et al. Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set [J]. Environmental Science & Technology, 2014, 48(9): 4 732-4 738.
28 MooreC J, MooreS L, LeecasterM K, et al. A comparison of plastic and plankton in the North Pacific central gyre [J]. Marine Pollution Bulletin, 2001, 42(12): 1 297-1 300.
29 GoldsteinM C, RosenbergM, ChengL. Increased oceanic microplastic debris enhances oviposition in an endemic pelagic insect [J]. Biology Letters, 2012, 8(5): 817-820.
30 EriksenM, MaximenkoN, ThielM, et al. Plastic pollution in the South Pacific subtropical gyre [J]. Marine Pollution Bulletin, 2013, 68(1/2): 71-76.
31 CózarA, EchevarríaF, González-GordilloJ I, et al. Plastic debris in the open ocean [J]. Proceedings of the National Academy of Sciences, 2014, 111(28): 10 239-10 244.
32 YamashitaR, TanimuraA. Floating plastic in the Kuroshio current area, western North Pacific Ocean [J]. Marine Pollution Bulletin, 2007, 4(54): 485-488.
33 LusherA L, BurkeA, O’ConnorI, et al. Microplastic pollution in the Northeast Atlantic Ocean: Validated and opportunistic sampling[J]. Marine Pollution Bulletin, 2014, 88(1/2): 325-333.
34 van SebilleE, EnglandM H, OriginFroyland G., dynamics and evolution of ocean garbage patches from observed surface drifters [J]. Environmental Research Letters, 2012, 7(4): 044040.
35 CózarA, MartíE, DuarteC M, et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the Thermohaline Circulation [J]. Science Advances, 2017, 3(4): e1600582.
36 KoelmansA A, KooiM, LawK L, et al. All is not lost: Deriving a top-down mass budget of plastic at sea [J]. Environmental Research Letters, 2017, 12(11): 114 028.
37 KukulkaT, ProskurowskiG, Morét‐FergusonS, et al. The effect of wind mixing on the vertical distribution of buoyant plastic debris [J]. Geophysical Research Letters, 2012, 39(7). DOI:10.1029/2012GL051116.
38 ReisserJ W, SlatB, NobleK D, et al. The vertical distribution of buoyant plastics at sea: An observational study in the North Atlantic Gyre [J]. Biogeosciences, 2015, 12(4): 1 249-1 256.
39 KooiM, ReisserJ, SlatB, et al. The effect of particle properties on the depth profile of buoyant plastics in the ocean [J]. Scientific Reports, 2016, 6: 33 882.
40 ChoyC A, RobisonB H, GagneT O, et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column [J]. Scientific Reports, 2019, 9(1): 7 843.
41 KanhaiL D K, G?rdfeldtK, LyashevskaO, et al. Microplastics in sub-surface waters of the Arctic Central Basin [J]. Marine Pollution Bulletin, 2018, 130: 8-18.
42 DesforgesJ P W, GalbraithM, DangerfieldN, et al. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean [J]. Marine Pollution Bulletin, 2014, 79(1/2): 94-99.
43 LiW C, TseH F, FokL. Plastic waste in the marine environment: A review of sources, occurrence and effects [J]. Science of the Total Environment, 2016, 566: 333-349.
44 KowalskiN, ReichardtA M, WaniekJ J. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors [J]. Marine Pollution Bulletin, 2016, 109(1): 310-319.
45 KhatmullinaL, IsachenkoI. Settling velocity of microplastic particles of regular shapes [J]. Marine Pollution Bulletin, 2017, 114(2): 871-880.
46 BallentA, PurserA, de Jesus MendesP, et al. Physical transport properties of marine microplastic pollution[J]. Biogeosciences Discussions, 2012, 9(12): 18 755-18 798.
47 BallentA, PandoS, PurserA, et al. Modelled transport of benthic marine microplastic pollution in the Nazaré Canyon [J]. Biogeosciences, 2013, 10(12): 7 957-7 970.
48 DietrichW E. Settling velocity of natural particles [J]. Water Resources Research, 1982, 18(6): 1 615-1 626.
49 BrunnerK, KukulkaT, ProskurowskiG, et al. Passive buoyant tracers in the ocean surface boundary layer: 2. Observations and simulations of microplastic marine debris [J]. Journal of Geophysical Research: Oceans, 2015, 120(11): 7 559-7 573.
50 KukulkaT, LawK L, ProskurowskiG. Evidence for the influence of surface heat fluxes on turbulent mixing of microplastic marine debris [J]. Journal of Physical Oceanography, 2016, 46(3): 809-815.
51 Courtene-JonesW, QuinnB, GaryS F, et al. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean [J]. Environmental Pollution, 2017, 231: 271-280.
52 Morét-FergusonS, LawK L, ProskurowskiG, et al. The size, mass, and composition of plastic debris in the western North Atlantic Ocean [J]. Marine Pollution Bulletin, 2010, 60(10): 1 873-1 878.
53 LobelleD, CunliffeM. Early microbial biofilm formation on marine plastic debris [J]. Marine Pollution Bulletin, 2011, 62(1): 197-200.
54 YeS, AndradyA L. Fouling of floating plastic debris under Biscayne Bay exposure conditions [J]. Marine Pollution Bulletin, 1991, 22(12): 608-613.
55 WangJ, TanZ, PengJ, et al. The behaviors of microplastics in the marine environment [J]. Marine Environmental Research, 2016, 113: 7-17.
56 KooiM, NesE H V, SchefferM, et al. Ups and downs in the ocean: Effects of biofouling on vertical transport of microplastics [J]. Environmental Science & Technology, 2017, 51(14): 7 963-7 971.
57 ZettlerE R, MincerT J, Amaral-ZettlerL A. Life in the “plastisphere”: Microbial communities on plastic marine debris [J]. Environmental Science & Technology, 2013, 47(13): 7 137-7 146.
58 KühnS, RebolledoE L B, van FranekerJ A. Deleterious effects of litter on marine life[M]//BergmannM, GutowL, KlagesM, eds. Marine Anthropogenic Litter. Cham: Springer International Publishing, 2015: 75-116.
59 QuX, SuL, LiH, et al. Assessing the relationship between the abundance and properties of microplastics in water and in mussels[J]. Science of the Total Environment, 2018, 621: 679-686.
60 SunXiaoxia. Progress and prospect on the study of the ecological risk of microplastics in the ocean [J]. Advances in Earth Science, 2016, 31(6): 560-566.
60 孙晓霞. 海洋微塑料生态风险研究进展与展望[J]. 地球科学进展, 2016, 31(6): 560-566.
61 JamiesonA J, MalkocsT, PiertneyS B, et al. Bioaccumulation of persistent organic pollutants in the deepest ocean fauna [J]. Nature Ecology & Evolution, 2017, 1(3): 51.
62 JamiesonA J, BrooksL S R, ReidW D K, et al. Microplastics and synthetic particles ingested by deep-sea amphipods in six of the deepest marine ecosystems on Earth[J]. Royal Society Open Science, 2019, 6(2): 180 667.
63 KatijaK, ChoyC A, SherlockR E, et al. From the surface to the seafloor: How giant larvaceans transport microplastics into the deep sea [J]. Science Advances, 2017, 3(8): e1700715.
64 LongM, MoriceauB, GallinariM, et al. Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates [J]. Marine Chemistry, 2015, 175: 39-46.
65 ZhaoS, DanleyM, WardJ E, et al. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy[J]. Analytical Methods, 2017, 9(9): 1 470-1 478.
66 PorterA, LyonsB P, GallowayT S, et al. Role of marine snows in microplastic fate and bioavailability[J]. Environmental Science & Technology, 2018, 52(12): 7 111-7 119.
67 ZhangChen, WangQing, ZhaoJianmin. Numerical simulation of transportation of marine microplastics: A review[J]. Advances in Earth Science, 2019, 34(1): 72-83.
67 张晨, 王清, 赵建民. 海洋微塑料输运的数值模拟研究进展[J]. 地球科学进展, 2019, 34(1): 72-83.
68 LebretonL C M, GreerS D, BorreroJ C. Numerical modelling of floating debris in the world’s oceans [J]. Marine Pollution Bulletin, 2012, 64(3): 653-661.
69 LebretonL C M, BorreroJ C. Modeling the transport and accumulation floating debris generated by the 11 March 2011 Tohoku tsunami [J]. Marine Pollution Bulletin, 2013, 66(1/2): 53-58.
70 SchliningK, Von ThunS, KuhnzL, et al. Debris in the deep: Using a 22-year video annotation database to survey marine litter in Monterey Canyon, central California, USA[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 79: 96-105.
71 TubauX, CanalsM, LastrasG, et al. Marine litter on the floor of deep submarine canyons of the Northwestern Mediterranean Sea: The role of hydrodynamic processes[J]. Progress in Oceanography, 2015, 134: 379-403.
72 ZhangY, LiuZ, ZhaoY, et al. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea [J]. Geology, 2018, 46(8): 675-678.
73 ObbardR W, SadriS, WongY Q, et al. Global warming releases microplastic legacy frozen in Arctic Sea ice[J]. Earth's Future, 2014, 2(6): 315-320.
74 ObbardR W. Microplastics in polar regions: The role of long range transport [J]. Current Opinion in Environmental Science & Health, 2018, 1: 24-29.
75 PeekenI, PrimpkeS, BeyerB, et al. Arctic sea ice is an important temporal sink and means of transport for microplastic[J]. Nature Communications, 2018, 9(1): 1 505.
文章导航

/