综述与评述

海因里希事件与类海因里希事件

  • 刘景昱 ,
  • 方念乔
展开
  • 中国地质大学(北京)海洋学院,北京 100083
刘景昱(1991-),男,河北沧州人,博士研究生,主要从事沉积学与古海洋学研究. E-mail:jyliucugb@yeah.net

收稿日期: 2019-01-07

  修回日期: 2019-04-22

  网络出版日期: 2019-07-05

基金资助

中国大洋矿产资源研究开发协会项目“合同区海山形成演化及铁锰矿床成矿模型研究”(DY135-C1-1-06)

Heinrich Events and Heinrich(-like) Events

  • Jingyu Liu ,
  • Nianqiao Fang
Expand
  • School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
Liu Jingyu(1991-), male, Cangzhou City, Hebei Province, Ph.D student. Research areas include sedimentology and paleoceanography. E-mail:jyliucugb@yeah.net

Received date: 2019-01-07

  Revised date: 2019-04-22

  Online published: 2019-07-05

Supported by

Foundation item: Project supported by the China Ocean Mineral Resource R & D Association “Formation and evolution of seamounts in the contract area and metallogenic model of iron-manganese deposits”(No. DY135-C1-1-06)

摘要

北大西洋冰筏碎屑(IRD)带内的沉积物中存在表征剧烈气候突变的冰筏碎屑层,它们通常被认为是末次冰期的海因里希事件和末次冰期之外的类海因里希事件的产物。在(类)海因里希事件发生期间,地球大气圈、海洋圈和冰冻圈在千年尺度上发生强烈的相互作用,并对全球气候产生了深远影响。近30年来关于海因里希事件及其远程响应的研究成果丰硕,目前更加聚焦于(类)海因里希事件的触发机制,以及寻找识别事件的代用新指标等方面。同一研究区内类海因里希事件在深海氧同位素阶段(MIS)16期间的首次出现,是中更新世转型之后重大的标志性气候机制的启动事件,对其研究可能需要引入与特大冰盖和长期冰期相关的新的冰盖动力学模式,当前正在形成新的研究热点。

本文引用格式

刘景昱 , 方念乔 . 海因里希事件与类海因里希事件[J]. 地球科学进展, 2019 , 34(6) : 618 -628 . DOI: 10.11867/j.issn.1001-8166.2019.06.0618

Abstract

Ice-raft debris layers in the North Atlantic sediments of IRD belt characterize abrupt climate variability, corresponding to Heinrich events during the Last Glacial and Heinrich(-like) events beyond the Last Glacial. During Heinrich/(-like) events, the Earth's atmosphere, hydrosphere and cryosphere interacted strongly on the millennial-scale and had a profound impact on the global climate. In more than 30 years of continuous research on Heinrich/(-like) events and their remote response, the results have been more focused on the trigger mechanism and the new distinguished proxies of Heinrich/(-like) events. The first occurrence of Heinrich/(-like) events in IRD belt during MIS 16 was the initiation of a major landmark climate mechanism after MPT. The research on Heinrich/(-like) events may require a new ice sheet dynamics model related to the large ice sheet and the long-term ice age, which is forming a new hot topic.

参考文献

1 Hemming S R . Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint[J]. Reviews of Geophysics, 2004, 42(1):RG1005. DOI: 10.1029/2003rg000128 .
2 Sakamoto T , Ikehara M , Aoki K , et al . Ice-rafted debris (IRD)-based sea-ice expansion events during the past 100kyrs in the Okhotsk Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2005, 52(16): 2 275-2 301.
3 Heinrich H . Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years[J]. Quaternary Research, 1988, 29: 142-152.
4 Broecker W , Bond G , Klas M , et al . Origin of the northern Atlantic's Heinrich events[J]. Climate Dynamics, 1992, 6(3): 265-273.
5 Bond G , Broecker W , Johnsen S , et al . Correlations between climate records from North Atlantic sediments and Greenland ice[J]. Nature, 1993, 365(6 442): 143-147.
6 Bond G , Heinrich H , Broecker W , et al . Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period[J]. Nature, 1992, 360(6 401): 245-249.
7 Bond G , Lotti R . Iceberg discharges into the North Atlantic on millennial time scales during the Last Glaciation[J]. Science,1995, 267(5 200): 1 005-1 010.
8 Andrews J T , Voelker A H L . “Heinrich events” (& sediments): A history of terminology and recommendations for future usage[J]. Quaternary Science Reviews, 2018, 187: 31-40.
9 Andrews J T , Tedesco K . Detrital carbonate-rich sediments, northwestern Labrador Sea: Implications for ice-sheet dynamics and iceberg rafting (Heinrich) events in the North Atlantic[J]. Geology, 1992, 20(12): 1 087-1 090.
10 Farmer GL , Barber D , Andrews J . Provenance of Late Quaternary ice-proximal sediments in the North Atlantic: Nd, Sr and Pb isotopic evidence[J]. Earth and Planetary Science Letters, 2003, 209(1): 227-243.
11 Bond G , Showers W , Elliot M , et al . The North Atlantic's 1-2 kyr Climate Rhythm: Relation to Heinrich Events, Dansgaard/Oeschger Cycles and the Little Ice Age[M]. American Geophysical Union, 1999: 35-58. DOI:10.129/GM112P0035 .
12 Naafs B D A , Hefter J , Stein R . Millennial-scale ice rafting events and Hudson Strait Heinrich(-like) Events during the late Pliocene and Pleistocene: A review[J]. Quaternary Science Reviews, 2013, 80: 1-28.
13 Hodell D A , Curtis J H . Oxygen and carbon isotopes of detrital carbonate in North Atlantic Heinrich Events[J]. Marine Geology, 2008, 256(1): 30-35.
14 Gwiazda R H , Hemming S R , Broecker W S . Provenance of icebergs during Heinrich Event 3 and the contrast to their sources during other Heinrich episodes[J]. Paleoceanography, 1996, 11(4): 371-378.
15 Grousset F , Pujol C , Labeyrie L , et al . Were the North Atlantic Heinrich events triggered by the behaviour of the European Ice Sheets?[J]. Geology, 2000, 28(2): 123.
16 MacAyeal D R . Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events[J]. Paleoceanography, 1993, 8(6): 775-784.
17 Johnson R G , Lauritzen S . Hudson Bay-Hudson Strait j?kulhlaups and Heinrich events: A hypothesis[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1995, 117(1/2): 123-137.
18 Hulbe C L , MacAyeal D R , Denton G H , et al . Catastrophic ice shelf breakup as the source of Heinrich event Icebergs[J]. Paleoceanography, 2004, 19(1). DOI: 10.1029/2003PA000890 .
19 Jonkers L , Moros M , Prins M A , et al . A reconstruction of sea surface warming in the northern North Atlantic during MIS 3 ice-rafting events[J]. Quaternary Science Reviews, 2010, 29(15): 1 791-1 800.
20 Weirauch D , Billups K , Martin P . Evolution of millennial-scale climate variability during the mid-Pleistocene[J]. Paleoceanography, 2008, 23(3). DOI:10.1029/2007PA001584 .
21 Hodell D A , Channell J E T , Curtis J H , et al . Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (~640 ka)?[J]. Paleoceanography, 2008, 23(4). DOI: 10.1029/2008PA001591 .
22 Hodell D A , Channell J E T . Mode transitions in Northern Hemisphere glaciation: Co-evolution of millennial and orbital variability in Quaternary climate[J]. Climate of the Past Discussions, 2016, 12: 1 805-1 828.
23 Hall I , Moran S B , Zahn R , et al . Accelerated drawdown of meridional overturning in the late-glacial Atlantic triggered by transient pre-H event freshwater perturbation[J]. Geophysical Research Letters, 2006, 33(16). DOI: 10.1029/2006GL026239 .
24 Jullien E , Grousset F E , Hemming S R , et al . Contrasting conditions preceding MIS3 and MIS2 Heinrich events[J]. Global and Planetary Change, 2006, 54(3): 225-238.
25 Peck V L , Hall I R , Zahn R , et al . High resolution evidence for linkages between NW European ice sheet instability and Atlantic Meridional Overturning Circulation[J]. Earth and Planetary Science Letters, 2006, 243(3): 476-488.
26 Peck V L , Hall I R , Zahn R , et al . The relationship of Heinrich events and their European precursors over the past 60 ka BP: A multi-proxy ice-rafted debris provenance study in the North East Atlantic[J]. Quaternary Science Reviews, 2007, 26(7/8): 862-875.
27 Haapaniemi A , Scourse J , Peck V , et al . Source, timing, frequency and flux of ice-rafted detritus to the Northeast Atlantic margin, 30-12 ka: Testing the Heinrich precursor hypothesis[J]. Boreas, 2010, 39(3): 576-591.
28 Crucifix M . Oscillators and relaxation phenomena in Pleistocene climate theory[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2012, 370(1 962): 1 140-1 165.
29 Small D , Austin W , Rinterknecht V . Freshwater influx, hydrographic reorganization and the dispersal of ice-rafted detritus in the sub-polar North Atlantic Ocean during the last deglaciation[J]. Journal of Quaternary Science, 2013, 28(5): 527-535.
30 Crowley T J . North Atlantic Deep Water cools the southern hemisphere[J]. Paleoceanography, 1992, 7(4): 489-497.
31 Blunier T , Brook E J . Timing of millennial-scale climate change in Antarctica and Greenland during the Last Glacial period[J]. Science, 2001, 291(5 501): 109-112.
32 Stocker T F , Johnsen S J . A minimum thermodynamic model for the bipolar seesaw[J]. Paleoceanography, 2003, 18(4). DOI:10.1029/2003PA000920 .
33 Knutti R , Flückiger J , Stocker T F , et al . Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation[J]. Nature, 2004, 430(7 002): 851-856.
34 Shackleton N J , Hall M A , Vincent E . Phase relationships between millennial-scale events 64,000-24,000 years ago[J]. Paleoceanography, 2000, 15(6): 565-569.
35 Hall I R , McCave I N . Palaeocurrent reconstruction, sediment and thorium focussing on the Iberian margin over the last 140 ka[J]. Earth and Planetary Science Letters, 2000, 178(1): 151-164.
36 Kubota K , Yokoyama Y , Ishikawa T , et al . Larger CO2 source at the equatorial Pacific during the last deglaciation[J]. Scientific Reports, 2014, 4: 5 261.
37 Weldeab S , Lea D W , Schneider R R , et al . 155,000 years of west african monsoon and ocean thermal evolution[J]. Science, 2007, 316(5 829): 1 303-1 307.
38 Porter S C , Zhisheng A . Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375(6 529): 305-308.
39 Wang Yongjin , Cheng Hai , Edwards R L , et al . A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5 550): 2 345-2 348.
40 Wang Xianfeng , Auler A S , Edwards R L , et al . Wet periods in northeastern Brazil over the past 210?kyr linked to distant climate anomalies[J]. Nature, 2004, 432(7 018): 740-743.
41 Kanner L C , Burns S J , Cheng H , et al . High-latitude forcing of the south American summer monsoon during the Last Glacial[J]. Science, 2012, 335(6 068): 570-573.
42 Muller J , Kylander M , Wüst R A J , et al . Possible evidence for wet Heinrich phases in tropical NE Australia: The Lynch's Crater deposit[J]. Quaternary Science Reviews, 2008, 27(5): 468-475.
43 Mohtadi M , Oppo D W , Steinke S , et al . Glacial to Holocene swings of the Australian-Indonesian monsoon[J]. Nature Geoscience, 2011, 4(8): 540.
44 Anderson R F , Ali S , Bradtmiller L I , et al . Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 [J]. Science, 2009, 323(5 920): 1 443-1 448.
45 Ahn J , Brook E J . Atmospheric CO2 and climate from 65 to 30 ka B.P[J]. Geophysical Research Letters, 2007, 34(10). DOI: 10.1029/2007GL029551 .
46 Denton G H , Anderson R F , Toggweiler J R , et al . The last glacial termination[J]. Science, 2010, 328(5 986): 1 652-1 656.
47 Hodell D A , Evans H F , Channell J E T , et al . Phase relationships of North Atlantic ice-rafted debris and surface-deep climate proxies during the last glacial period[J]. Quaternary Science Reviews, 2010, 29(27): 3 875-3 886.
48 Obrochta S P , Crowley T J , Channell J E T , et al . Climate variability and ice-sheet dynamics during the last three glaciations[J]. Earth and Planetary Science Letters, 2014, 406: 198-212.
49 Andrews J T , Jennings A E , Kerwin M , et al . A Heinrich-like event, H-0 (DC-0): Source(s) for detrital carbonate in the North Atlantic during the Younger Dryas Chronozone[J]. Paleoceanography, 1995, 10(5): 943-952.
50 Bailey I , Foster G L , Wilson P A , et al . Flux and provenance of ice-rafted debris in the earliest Pleistocene sub-polar North Atlantic Ocean comparable to the last glacial maximum[J]. Earth and Planetary Science Letters, 2012, 341/344: 222-233.
51 Carlson A E , Winsor K . Northern Hemisphere ice-sheet responses to past climate warming[J]. Nature Geoscience, 2012, 5(9): 607.
52 Stein R , Hefter J , Grützner J , et al . Variability of surface water characteristics and Heinrich-like events in the Pleistocene midlatitude North Atlantic Ocean: Biomarker and XRD records from IODP Site U1313 (MIS 16-9)[J]. Paleoceanography, 2009, 24(2). DOI: 10.1029/2008pa001639 .
53 Naafs B D A , Hefter J , Ferretti P , et al . Sea surface temperatures did not control the first occurrence of Hudson Strait Heinrich Events during MIS 16[J]. Paleoceanography, 2011, 26(4). DOI: 10.1029/2011pa002135 .
54 Liu Jingyu , Fang Nianqiao , Wang Feng , et al . Features of ice-rafted debris (IRD) at IODP site U1312 and their palaeoenvironmental implications during the last 2.6 Myr[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 511: 364-378.
55 Marshall S J , Clark P U . Basal temperature evolution of North American ice sheets and implications for the 100-kyr cycle[J]. Geophysical Research Letters, 2002, 29(24): 2 214.
56 Hernández-Almeida I , Sierro F J , Cacho I , et al . Impact of suborbital climate changes in the North Atlantic on ice sheet dynamics at the Mid-Pleistocene Transition[J]. Paleoceanography, 2012, 27(3). DOI: 10.1029/2011PA002209 .
57 Clark P U , Archer D , Pollard D , et al . The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2 [J]. Quaternary Science Reviews, 2006, 25(23): 3 150-3 184.
58 Sosdian S , Rosenthal Y . Deep-sea temperature and ice volume changes across the Pliocene-Pleistocene climate transitions[J]. Science, 2009, 325(5 938): 306-310.
文章导航

/