收稿日期: 2019-01-30
修回日期: 2019-03-20
网络出版日期: 2019-07-04
基金资助
国家自然科学基金重点项目“热带海草床食物链有机碳传递过程及其对富营养化的响应机制”(编号:41730529)
Research Progress of the Transfer Process of Organic Carbon Through Food Chain in Seagrass Bed
Received date: 2019-01-30
Revised date: 2019-03-20
Online published: 2019-07-04
Supported by
Project supported by the National Natural Science Foundation of China “The transfer process of organic carbon through food chain in tropical seagrass bed and its response to eutrophication”(No. 41730529)
海草床是重要的近海生态系统,生产力极高,可为海洋动物提供良好的栖息地和丰富的有机碳食源;人类活动引起近岸海域的富营养化,可能会改变海草床有机碳源组成和性质,进而影响植食动物和次级消费者的摄食过程及其食物链能量传递效率,从而影响海草床的生物资源产出功能。归纳总结了国内外海草床食物链碳传递过程各方面的研究进展,主要包括:
黄小平 , 江志坚 . 海草床食物链有机碳传递过程的研究进展[J]. 地球科学进展, 2019 , 34(5) : 480 -487 . DOI: 10.11867/j.issn.1001-8166.2019.05.0480
Seagrass beds are highly productive coastal ecosystems, which provide good nursery habitat and abundant Organic Carbon Sources (OCS) as food for marine animals. Human activities have led to widespread eutrophication in coastal areas. Eutrophication may alter the composition and properties of OCS, thereby affecting the feeding process of herbivores and secondary consumer, and energy transfer efficiency in food chain. This may affect the production function of biological resource in seagrass beds. Based on the summary of the foreign and domestic researches, primary achievements were systematically reviewed in this paper in five aspects: the composition of OCS and their contribution, feeding process of herbivore, food web structure and energy transfer efficiency, and their responses to eutrophication. Future researches that should be emphasized were also prospected. With the combined application of stable isotope analysis for bulks and tissues, fatty acid biomarkers and compound-specific stable isotope analysis, the quantitative study of the contribution of OCS, food web structure, key carbon flow pathway and their seasonal change patterns should be enhanced. Meanwhile, the differences of OCS between larval and adult stages of key consumers will need to be further examined to clarify the transformation of their feeding habits. Through field investigation, in-situ mesocosm and laboratory simulation experiments, the effects of nutrient increase on the structure (seagrass and epiphyte, etc.) and chemical composition (nutritional quality and secondary compounds, etc.) of OCS, the response of feeding process of herbivore and secondary consumer to the alteration of chemical compounds in primary producers, and the response mechanism of carbon transfer efficiency of the grazing food chain and detritus food chain need to be further studied.
Key words: Seagrass beds; Food chain; Organic carbon; Transfer; Eutrophication.
1 | Bertelli C M , Unsworth R K . Protecting the hand that feeds us: Seagrass (Zostera marina) serves as commercial juvenile fish habitat[J]. Marine Pollution Bulletin, 2014, 83(2): 425-429. |
2 | A-M Vafeiadou , Materatski P , Ad?o H , et al . Food sources of macrobenthos in an estuarine seagrass habitat (Zostera noltii) as revealed by dual stable isotope signatures[J]. Marine Biology, 2013, 160: 2 517-2 523. |
3 | Scott A L , York P H , Duncan C , et al . The role of herbivory in structuring tropical seagrass ecosystem service delivery[J]. Frontiers in Plant Science, 2018, 9:127. |
4 | Cardona L , Revelles M , Sales M , et al . Meadows of the seagrass Posidonia oceanica are a significant source of organic matter for adjoining ecosystems[J]. Marine Ecology Progress Series, 2007, 335:123-131. |
5 | Kennedy H , Beggins J , Duarte C M , et al . Seagrass sediments as a global carbon sink: Isotopic constraints[J]. Global Biogeochemical Cycles, 2010,24: GB4026. |
6 | Belicka L L , Burkholder D , Fourqurean J W , et al . Stable isotope and fatty acid biomarkers of seagrass, epiphytic, and algal organic matter to consumers in a pristine seagrass ecosystem[J]. Marine and Freshwater Research, 2012, 63(11): 1 085-1 097. |
7 | Jiménez-Ramos R , Brun F G , Egea L G , et al . Food choice effects on herbivory: Intra-specific seagrass palatability and inter-specific macrophyte palatability in seagrass communities[J]. Estuarine, Coastal and Shelf Science, 2018,204:31-39. |
8 | Ouisse V , Riera P , Migné A , et al . Food web analysis in intertidal Zostera marina and Zostera noltii communities in winter and summer[J]. Marine Biology, 2012, 159(1): 165-175. |
9 | Coll M , Schmidt A , Romanuk T , et al . Food-web structure of seagrass communities across different spatial scales and human impacts[J]. PloS ONE, 2011, 6(7): 1-13. |
10 | Schmidt A L , Wysmyk J K , Craig S E , et al . Regional-scale effects of eutrophication on ecosystem structure and services of seagrass beds[J]. Limnology and Oceanography, 2012, 57(5): 1 389-1 402. |
11 | Schmidt A L , Coll M , Lotze H K . Regional-scale differences in eutrophication effects on Eelgrass-associated (Zostera marina) macrofauna[J]. Estuaries and Coasts, 2017, 40(4):1 096-1 112. |
12 | Leoni V , Vela A , Pasqualini V , et al . Effects of experimental reduction of light and nutrient enrichments (N and P) on seagrasses: A review[J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 2008, 18(2): 202-220. |
13 | Vergés A , Alcoverro T , Romero J . Plant defences and the role of epibiosis in mediating within-plant feeding choices of seagrass consumers[J]. Oecologia, 2011, 166(2): 381-390. |
14 | Carlier A , Riera P , Amouroux J M , et al . Food web structure of two Mediterranean lagoons under varying degree of eutrophication[J]. Journal of Sea Research, 2008, 60(4): 264-275. |
15 | Kharlamenko V , Kiyashko S , Imbs A , et al . Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur stable isotope ratio and fatty acid analyses[J]. Marine Ecology Progress Series, 2001, 220: 103-117. |
16 | Vizzini S , Mazzola A . Sources and transfer of organic matter in food webs of a Mediterranean coastal environment: Evidence for spatial variability[J]. Estuarine, Coastal and Shelf Science, 2006, 66(3): 459-467. |
17 | Vonk J A , Christianen M J , Stapel J . Redefining the trophic importance of seagrasses for fauna in tropical Indo-Pacific meadows[J]. Estuarine, Coastal and Shelf Science, 2008, 79(4): 653-660. |
18 | Jaschinski S , Brepohl D C , Sommer U . Carbon sources and trophic structure in an eelgrass Zostera marina bed, based on stable isotope and fatty acid analyses[J]. Marine Ecology Progress Series, 2008, 358: 103-114. |
19 | Lebreton B , Richard P , Galois R , et al . Trophic importance of diatoms in an intertidal Zostera noltii seagrass bed: Evidence from stable isotope and fatty acid analyses[J]. Estuarine, Coastal and Shelf Science, 2011, 92(1): 140-153. |
20 | Fan Minling , Huang Xiaoping , Zhang Dawen , et al . Food sources of fish and macro-invertebrates in a tropical seagrass bed at Xincun Bay,Southern China[J]. Acta Ecologica Sinica, 2011, 31(1): 31-38. |
20 | 樊敏玲, 黄小平, 张大文, 等 . 海南新村湾海草床主要鱼类及大型无脊椎动物的食源[J]. 生态学报, 2011, 31(1): 31-38. |
21 | Cui Ying , Wu Ying , Zhang Jing . Identification of diet sources of Siganus in Qinlan Bay of Hainan Province with biomarkers[J]. Journal of Applied Oceanography, 2013, 32(4): 540-548. |
21 | 崔莹, 吴莹, 张经 . 生物标志物对海南清澜湾水域篮子鱼食物来源的表征[J]. 应用海洋学学报, 2013, 32(4): 540-548. |
22 | Dubois S , Blanchet H , Garcia A , et al . Trophic resource use by macrozoobenthic primary consumers within a semi-enclosed coastal ecosystem: Stable isotope and fatty acid assessment[J]. Journal of Sea Research, 2014, 88: 87-99. |
23 | Dromard C R , Vaslet A , Gautier F , et al . Resource use by three juvenile scarids (Cryptotomus roseus, Scarus iseri, Sparisoma radians) in Caribbean seagrass beds[J]. Aquatic Botany, 2017, 136: 1-8. |
24 | Xu W Z , Cheung S G , Zhang Z N , et al . Dual isotope assessment of trophic dynamics of an intertidal infaunal community with seasonal shifts in food sources[J]. Marine Biology, 2018, 165(1): 21. |
25 | Mittermayr A , Fox S E , Sommer U . Temporal variation in stable isotope composition (δ13C, δ15N and δ34S) of a temperate Zostera marina food web[J]. Marine Ecology Progress Series, 2014, 505: 95-105. |
26 | Connolly R M , Hindell J S , Gorman D . Seagrass and epiphytic algae support nutrition of a fisheries species, Sillago schomburgkii, in adjacent intertidal habitats[J]. Marine Ecology Progress Series, 2005, 286: 69-79. |
27 | Olsen Y S , Fox S E , Hofmann L , et al . Benthic community composition and faunal stable isotopic signatures differ across small spatial scales in a temperate estuary[J]. Marine Environmental Research, 2013, 86: 12-20. |
28 | Park H J , Choy E J , Lee K S , et al . Trophic transfer between coastal habitats in a seagrass-dominated macrotidal embayment system as determined by stable isotope and fatty acid signatures[J]. Marine and Freshwater Research, 2013, 64: 1 169-1 183. |
29 | Xu Qiang , Yang Hongsheng . Fatty acid biomarker and its application in marine trophic relation studies[J]. Acta Oceanologica Sinica, 2011,33(1): 1-6. |
29 | 许强, 杨红生 . 脂肪酸标志物在海洋生态系统营养关系研究中的应用[J]. 海洋学报, 2011, 33(1): 1-6. |
30 | Wu Y , Wang N , Zhang J , et al . Compound-specific isotopes of fatty acids as indicators of trophic interactions in the East China Sea ecosystem[J]. Chinese Journal of Oceanology and Limnology, 2016, 34: 1 085-1 096. |
31 | Williams C J , Jaffé R , Anderson W T , et al . Importance of seagrass as a carbon source for heterotrophic bacteria in a subtropical estuary (Florida Bay)[J]. Estuarine, Coastal and Shelf Science, 2009, 85(3): 507-514. |
32 | Heck Jr K L , Valentine J F . Plant-herbivore interactions in seagrass meadows[J]. Journal of Experimental Marine Biology and Ecology, 2006, 330(1): 420-436. |
33 | Smit A J , Brearley A , Hyndes G A , et al . δ15N and δ13C analysis of a Posidonia sinuosa seagrass bed[J]. Aquatic Botany, 2006, 84(3): 277-282. |
34 | Liu Songlin , Jiang Zhijian , Wu Yunchao , et al . Nursery function of seagrass beds and its mechanisms[J]. Acta Ecologica Sinica, 2015, 35(24): 7 931-7 940. |
34 | 刘松林, 江志坚, 吴云超, 等 . 海草床育幼功能及其机理[J]. 生态学报, 2015, 35(24): 7 931-7 940. |
35 | Perkins-Visser E , Wolcott T G , Wolcott D L . Nursery role of seagrass beds: Enhanced growth of juvenile blue crabs (Callinectes sapidus Rathbun)[J]. Journal of Experimental Marine Biology and Ecology, 1996, 198(2): 155-173. |
36 | Verwey M , Nagelkerken I , Graaff D , et al . Structure, food and shade attract juvenile coral reef fish to mangrove and seagrass habitats: A field experiment[J]. Marine Ecology Progress Series, 2006, 306: 257-268. |
37 | Leduc D , Probert P K . Small-scale effect of intertidal seagrass (Zostera muelleri) on meiofaunal abundance, biomass, and nematode community structure[J]. Journal of the Marine Biological Association of the United Kingdom, 2011, 91(3): 579-591. |
38 | Dethier M , Sosik E , Galloway A , et al . Addressing assumptions: Variation in stable isotopes and fatty acids of marine macrophytes can confound conclusions of food web studies[J]. Marine Ecology Progress Series, 2013, 478: 1-14. |
39 | Spivak A C , Canuel E A , Duffy J E , et al . Nutrient enrichment and food web composition affect ecosystem metabolism in an experimental seagrass habitat[J]. PloS ONE, 2009, 4(10): e7473. |
40 | Kirsch K D , Valentine J F , Heck K L . Parrotfish grazing on turtlegrass Thalassia testudinum: Evidence for the importance of seagrass consumption in food web dynamics of the Florida Keys National Marine Sanctuary[J]. Marine Ecology Progress Series, 2002, 227: 71-85. |
41 | Holzer K , Rueda J , McGlathery K . Differences in the feeding ecology of two seagrass-associated snails[J]. Estuaries and Coasts, 2011, 34(6): 1 140-1 149. |
42 | Vergés A , Becerro M , Alcoverro T , et al . Experimental evidence of chemical deterrence against multiple herbivores in the seagrass Posidonia oceanica [J]. Marine Ecology Progress Series, 2007, 343: 107-114. |
43 | Del Río L , Vidal J , Betancor S , et al . Differences in herbivory intensity between the seagrass Cymodocea nodosa and the green alga Caulerpa prolifera inhabiting the same habitat[J]. Aquatic Botany, 2016, 128: 48-57. |
44 | Goecker M , Heck Jr K , Valentine J . Effects of nitrogen concentrations in turtlegrass Thalassia testudinum on consumption by the bucktooth parrotfish Sparisoma radians [J]. Marine Ecology Progress Series, 2005, 286: 239-248. |
45 | Holzer K K , Seekell D A , McGlathery K J . Bucktooth parrotfish Sparisoma radians grazing on Thalassia in Bermuda varies seasonally and with background nitrogen content[J]. Journal of Experimental Marine Biology and Ecology, 2013, 443: 27-32. |
46 | Valentine J F , Duffy J E . The central role of grazing in seagrass ecology[M] //Larkum A W , Orth R R J , Duarte C M , eds . Seagrasses: Biology, Ecology, and Conservation. Dordrecht: Springer, 2006: 463-501. |
47 | Hixson S M , Arts M T . Climate warming is predicted to reduce omega-3, long-chain, polyunsaturated fatty acid production in phytoplankton[J]. Global Change Biology, 2016, 22(8): 2 744-2 755. |
48 | Steele L , Valentine J F . Seagrass deterrence to mesograzer herbivory: Evidence from mesocosm experiments and feeding preference trials[J]. Marine Ecology Progress Series, 2015, 524: 83-94. |
49 | Darnell K M , Heck K L . Species-specific effects of prior grazing on the palatability of turtlegrass[J]. Journal of Experimental Marine Biology and Ecology, 2013, 440: 225-232. |
50 | Marco-Méndez C , Ferrero-Vicente L M , Prado P , et al . Epiphytes and nutrient contents influence Sarpa salpa herbivory on Caulerpa spp vs. seagrass species in Mediterranean meadows[J]. Estuarine, Coastal and Shelf Science, 2017, 184: 54-66. |
51 | Qiu Guanglong , Zhou Haolang , Qin Qiurong , et al . Interactions between seagrass ecosystem and the endangered marine mammal dugong[J]. Marine Environmental Science, 2013, 32(6): 970-974. |
51 | 邱广龙, 周浩郎, 覃秋荣, 等 . 海草生态系统与濒危海洋哺乳动物儒艮的相互关系[J]. 海洋环境科学, 2013, 32(6): 970-974. |
52 | Wang Feng , Zhou Yi . Seagrass-herbivore interactions in seagrass seabed: A review[J].Chinese Journal of Ecology, 2014, 33(3): 843-848. |
52 | 王峰, 周毅 . 海草床中的海草—草食动物相互作用[J]. 生态学杂志, 2014, 33(3): 843-848. |
53 | Cohen J , Beaver R , Cousins S , et al . Improving food webs[J]. Ecology, 1993, 74: 252-258. |
54 | Minagawa M , Wada E . Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age[J]. Geochimica et Cosmochimica Acta, 1984, 48(5): 1 135-1 140. |
55 | Zanden M J V , Rasmussen J B . Primary consumer δ13C and δ15N and the trophic position of aquatic consumers[J]. Ecology, 1999, 80(4): 1 395-1 404. |
56 | Jephson T , Nystr?m P , Moksnes P O , et al . Trophic interactions in Zostera marina beds along the Swedish coast[J]. Marine Ecology Progress Series, 2008, 369: 63-76. |
57 | Mukai H , Iijima A . Grazing effects of a gammaridean Amphipoda, Ampithoe sp., on the seagrass, Syringodium isoetifolium, and epiphytes in a tropical seagrass bed of Fiji[J]. Ecological Research, 1995, 10(3): 243-257. |
58 | Patrício J , Marques J C . Mass balanced models of the food web in three areas along a gradient of eutrophication symptoms in the south arm of the Mondego estuary (Portugal)[J]. Ecological Modelling, 2006, 197(1): 21-34. |
59 | Jankowska E , Michel L N , Lepoint G , et al . Stabilizing effects of seagrass meadows on coastal water benthic food webs[J]. Journal of Experimental Marine Biology and Ecology, 2019, 510: 54-63. |
60 | Burkholder J M , Tomasko D A , Touchette B W . Seagrasses and eutrophication[J]. Journal of Experimental Marine Biology and Ecology, 2007, 350(1): 46-72. |
61 | Zhang J , Huang X , Jiang Z . Physiological responses of the seagrass Thalassia hemprichii (Ehrenb.) Aschers as indicators of nutrient loading[J]. Marine Pollution Bulletin, 2014, 83: 508-515. |
62 | Olsen Y , Fox S , Teichberg M , et al . δ15N and δ13C reveal differences in carbon flow through estuarine benthic food webs in response to the relative availability of macroalgae and eelgrass[J]. Marine Ecology Progress Series, 2011, 421: 83-96. |
63 | Duarte C M , Kennedy H , Marbà N , et al . Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies[J]. Ocean & Coastal Management, 2013, 83: 32-38. |
64 | Hardison A , Canuel E , Anderson I , et al . Microphytobenthos and benthic macroalgae determine sediment organic matter composition in shallow photic sediments[J]. Biogeosciences, 2013, 10: 5 571-5 588. |
65 | Hernán G , Castejón I , Terrados J , et al . Herbivory and resource availability shift plant defense and herbivore feeding choice in a seagrass system[J]. Oecologia, 2019, 189(3): 719-732. |
66 | Buchsbaum R N , Short F T , Cheney D P . Phenolic-nitrogen interactions in eelgrass, Zostera marina L.: Possible implications for disease resistance[J]. Aquatic Botany, 1990, 37(3): 291-297. |
67 | Tewfik A , Rasmussen J B , McCann K S . Simplification of seagrass food webs across a gradient of nutrient enrichment[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64(7): 956-967. |
68 | Reusch T B , Williams S L . Macrophyte canopy structure and the success of an invasive marine bivalve[J]. Oikos, 1999, 84: 398-416. |
69 | York P H , Kelaher B P , Booth D J , et al . Trophic responses to nutrient enrichment in a temperate seagrass food chain[J]. Marine Ecology Progress Series, 2012, 449: 291-296. |
/
〈 |
|
〉 |