收稿日期: 2001-02-09
修回日期: 2001-04-14
网络出版日期: 2001-12-01
基金资助
国家自然科学基金项目“青藏高原冰雪化学成分时空分布特征及其环境信息研究”(编号:49801004)、中国科学院知识创新工程重大项目“西部生态环境演变规律与水土资源可持续利用研究”(编号:KZCX1-10-02)和国家重点基础研究发展规划项目“青藏高原形成演化及其环境、资源效应”(编号:G1998040800)联合资助.
GREENHOUSE GASES AND CLIMATE: PAST CHANGES AND THEIR SIGNIFICANCE FOR THE FUTURE
Received date: 2001-02-09
Revised date: 2001-04-14
Online published: 2001-12-01
邵雪梅 , 王宁练 , 姚檀栋 . 温室气体与气候:过去变化对未来的启示[J]. 地球科学进展, 2001 , 16(6) : 821 -828 . DOI: 10.11867/j.issn.1001-8166.2001.06.0821
In recent decades, the role of greenhouse gases on climate change since human industrialization has been emphasized in floods of papers and books. Here, we review the causes of climate change during the 20th century, and some new evidences for decoupling of atmospheric greenhouse gases and climate from ice cores and geological records, and then point out some important issues needed to be further studied, such as the age difference between ice and young air it encloses, and the correlation between the Sun and the Earth climate.
Key words: Solar activity; Greenhouse gases; Climatic change
[1] Kerr R A. It’s official: humans are behind most of global warming [J]. Science, 2001, 291(5 504): 566.
[2] Rind D. Climate change: just add water vapor [J]. Science, 1999, 281(5 380): 1 152-1 153.
[3] Wang Ninglian, Yao Tandong, Shi Yafeng, et al. On the magnitude of temperature decrease in the equatorial regions during the Last Glacial Maximum[J]. Science in China (D), 1999, 42(supp.1): 80~90. [王宁练, 姚檀栋, 施雅风, 等. 末次冰盛期时赤道地区的降温幅度问题[J]. 中国科学(D), 1999, 29(增1): 70-78.]
[4] Evans S J, Toumi R, Harries J E, et al. Trends in stratospheric humidity and the sensitivity of ozone to these trends [J]. Journal of Geophysical Research, 1998, 103(D8): 8 715-8 725.
[5] Mann M E, Bradley R S, Hughes M K. Global-scale temperature patterns and climate forcing over the past six centuries [J]. Nature, 1998, 392(6 678): 779-787.
[6] Bradley R. 1000 years of climate change [J]. Science, 2000, 288(5 470): 1 353-1 355.
[7] Johnsen S J, Clausen H B, Dansgaard W, et al. Irregular glacial interstadials recorded in a new Greenland ice core [J]. Nature, 1992, 359(6 393): 311-313.
[8] Grootes P M, Stuiver M, White J W C, et al. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores [J]. Nature, 1993, 366: 552-554.[9] Dansgaard W, Johnsen S, Clausen H, et al. Evidence for a general instability of the past climat from a 250 kyr ice core record [J]. Nature, 1993, 364(6 434): 218-220.
[10] Taylor K C, Lamorey G W, Doyle G A, et al. The “flickering switch” of late Pleistocene climate change [J]. Nature, 1993, 361: 432-436.
[11] Yao Tandong. Abrupt climatic changes on the Tibetan Plateau during the Last Ice Age [J]. Science in China(D), 1999, 42(4): 358-368. [姚檀栋. 末次冰期青藏高原的气候突变[J]. 中国科学(D), 1999, 29(2): 175-184.]
[12] Lang C, Leuenberger M, Schwander J, et al. 16℃ rapid temperature variation in Central Greenland 70,000 years ago [J]. Science, 1999, 286(5 441): 934-937.
[13] Ramanathan V. Greenhouse effect due to chlorofluorocarbons: climatic implications [J]. Science, 1975, 190: 50-52.
[14] Sturges W T, Wallington T J, Hurley M D, et al. A Potent greenhouse gas identified in the atmosphere: SF5CF3 [J]. Science, 2000, 289(5 493): 611-613.
[15] Wang W C, Yung Y L, Lacis A A, et al. Greenhouse effects due to man-made perturbations of trace gases [J]. Science, 1976, 194(4 266): 685-690.
[16] Ramanathan V, Cicerone R J, Singh H B, et al. Trace gas trends and their potential role in climate change [J]. Journal of Geophysical Research, 1985, 90(D3): 5 547-5 566.
[17] Hansen J E, Lacis A, Lebedeff S A. Commentary on climatic effects of minor atmospheric constituents [A]. In: Clark W C, ed. Carbon Dioxide Review [C]. New York: Clarendon Press, 1982. 284-286.
[18] Hansen J, Lacis A and Prather M. Greenhouse effect of Chlorofluorocarbons and other trace gases [J]. Journal of Geophysical Research, 1989, 94(D13): 16 417-16 421.
[19] Houghton J T, Meira Filho L G, Callander B A, et al. Climate Change 1995: the Science of Climate Change [M]. Cambridge: Cambridge University Press, 1996. 1-572.
[20] Mann M E. Lessons for a new millennium [J]. Science, 2000, 289(5477): 253-254.
[21] Rind G C. Influence of solar variability on global sea surface temperatures [J]. Nature, 1987, 329: 142-143.
[22] Friis-Christensen E, Lassen K. Length of the solar cycle: an indicator of solar activity closely associated with climate [J]. Science, 1991, 254(5032): 698-700.
[23] Hoyt D V, Schatten K H. The Role of the Sun in Climate Change [M]. Oxford: Oxford University Press, 1997. 1-279.
[24] Baliunas S, Soon W. Are variations in the length of the activity cycle related to changes in brightness in solar-type stars? [J]. Astrophysical Journal, 1995, 450(4): 896-901.
[25] Solanki S K, Fligge. Solar irradiance since 1874 revisited [J]. Geophysical Research Letters, 1998, 25(3): 341-344.
[26] Cliver E W, Boriakoff V. Solar variability and climate change: Geomagnetic aa index and global surface temperature [J]. Geophysical Research Letters, 1998, 25(7): 1 035-1 038.
[27] Lean J. Variations in the Sun's radiative output [J]. Reviews of Geophysics and Space Physics, 1991, 29(3): 505-535.
[28] Haigh J D. The impact of solar variability on climate [J]. Science, 1996, 272(5 264): 981-984.
[29] Ney E R. Cosmic radiation and the weather [J]. Nature, 1959, 183(4 659): 451-452.
[30] Svensmark H, Friss-Christensen E. Variation of cosmic ray flux and global cloud coverage—a missing link in solar-climate relationships [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1997, 59(11): 1 225-1 232.
[31] Kelly P M, Wigley T M L. Solar cycle length, greenhouse forcing and global climate [J]. Nature, 1992, 360(6 402): 328-330.
[32] Schlesinger M E, Ramankutty N. Implications for global warming of solar irradiance variations [J]. Nature, 1992, 360(6 402): 330-333.
[33] Thompson D J. Dependence of global temperatures on atmospheric CO2 and solar irradiance [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94: 8 370-8 377.
[34] Lean J, Beer J, Bradley R. Reconstruction of solar irradiance since 1610: implications for climate change [J]. Geophysical Research Letters, 1995, 22(23): 3 195-3 198.
[35] Crowley T J, Kim K Y. Comparison of proxy records of climate change and solar forcing [J]. Geophysical Research Letters, 1996, 23(4): 359-362.
[36] Tett S F B, Stott P A, Allen M R, et al. Causes of twentieth-century temperature change near the Earth's surface [J]. Nature, 1999, 399(6 736): 569-572.
[37] Shindell D T, Miller R L, Schmidt G A, et al. Simulation of recent northern winter climate trends by greenhouse-gas forcing [J]. Nature, 1999, 399(6 735): 452-455.[38] Andronova N G, Schlesinger M E. Causes of global temperature changes during the 19th and 20th centuries [J]. Geophysical Research Letters, 2000, 27(14): 2 137-2 140.
[39] Crowley T J. Causes of climate change over the past 1 000 years [J]. Science, 2000, 289(5 477): 270-277.
[40] Zwiers F W, Weaver A J. The causes of 20th century warming [J]. Science, 2000, 290(5 499): 2 081-2 083.
[41] Stott P A, Tett S F B, Jones G S, et al. External control of 20th century temperature by natural and anthropogenic forcings [J]. Science, 2000, 290(5 499): 2 133-2 137.
[42] O'Brien S R, Mayewski P A, Meeker L D, et al. Complexity of Holocene climate as reconstructed from a Greenland ice core [J]. Science, 1995, 270(5 244): 1 962-1 964.
[43] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale cycle in North Atlantic Holocene and Glacial climates [J]. Science, 1997, 278( 5 341): 1 257-1 266.
[44] Bianchi G G, McCave I N. Holocene periodicity in North Atlantic climate and deep-ocean flow south of Iceland [J]. Nature, 1999, 397(6 719): 515-517.
[45] Kerr R A. The Little Ice Age—only the latest big chill [J]. Science, 1999, 284(5 423): 2069.
[46] Petit J R, Jouzel J, Raunaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica [J]. Nature, 1999, 399(6 735): 429-436.
[47] Fisher H, Wahlen M, Smith J, et al. Ice core records of atmospheric CO2 around the last three glacial terminations [J]. Science, 1999, 283(5 408): 1 712-1 714.
[48] Loutre M F, Berger A. No glacial-interglacial cycle in the ice volume simulated under a constant astronomical forcing and a variable CO2 [J]. Geophysical Research Letters, 2000, 27(6): 783-786.
[49] Steig E J. Mid-Holocene climate change [J]. Science, 1999, 286(5 444): 1 485.
[50] Severinghaus J P, Brook E J. Abrupt climate change at the end of the last glacial period inferred from trapped air in polar ice [J]. Science, 1999, 286(5 441): 930-934.
[51] Raynaud D, Jouzel J, Barnola J M, et al. The ice record of greenhouse gases [J]. Science, 1993, 259(5 097): 926-933.
[52] Anklin M, Schwander J, Stauffer B, et al. CO2 record between 40 and 8 ka BP from the Greenland ice core project ice core [J]. Journal of geophysical Research, 1997, 102(C12): 26 539-26 545.
[53] Chappellaz J, Blunier T, Ratnaud D, et al. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP [J]. Nature, 1993, 366: 443-445.
[54] Blunier T, Schwander J, Stauffer B, et al. Timing of the Antarctic cold reversal and the atmospheric CO2 increase with respect to the Younger Dryas event [J]. Geophysical Research Letters, 1997, 24(21): 2 683-2 686.
[55] Jouzel J, Petit J R, Barkov N I, et al. The last deglaciation in Antarctica: further evidence of a Younger Dryas type climatic event [A]. In: Bard E, Broecker W S, eds. The Last Deglaciation: Absolute and Radiocarbon Chronologies[C]. Berlin: Springer-Verlag, 1990. 229-266.
[56] Sower T, Bender M. Climate records covering the last deglaciation [J]. Science, 1995, 269: 210-214.
[57] White J W C, Ciais P, Figge R A, et al. A high-resolution record of atmospheric CO2 content from carbon isotopes in peat [J]. Nature, 1994, 367(6 459): 153-155.[58] Crowley T J. Remembrance of things past: greenhouse lessons from the geological record [J]. Conesquences, 1996, 2(1): 23-31.
[59] Herbert T D. A long marine history of carbon cycle modulation by orbital-climatic changes [A]. In: Proceedings of the Natinal Academy of Sciences of the United States of America[C]. 1997, 94: 8 362-8 369.
[60] Barron E J. A warm, equable Cretaceous: the nature of the problem [J]. Earth Science Reviews, 1983, 19(2): 305-338.
[61] Berner R A. Paleo-CO2 and climate [J]. Nature, 1992, 358(6 382): 114.
[62] Pearson P N, Palmer M R. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations [J]. Science, 1999, 284(5 421): 1 824-1 826.
[63] Pagani M, Arthur M A, Freeman K H. Miocene evolution of atmospheric carbon dioxide [J]. Paleoceanography, 1999, 14(3): 273-292.
[64] Flower B P. Warming without high CO2? [J]. Nature, 1999, 399(6 734): 313-314.
[65] Veizer J, Godderis Y, Fracois L M. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon [J]. Nature, 2000, 408: 698~701.[66] Kerr R A. Slide into ice ages not carbon dioxide's fault? [J]. Science, 1999, 284(5 421): 1 743~1 746.
[67] Kerr R A. The sun again intrudes on Earth's decadal climate change [J]. Science, 2000, 288(5 473): 1986.
[68] Kerr R A. Warming's unpleasant surprise: shivering in the Greenhouse? [J]. Science, 1998, 281(5 374): 156-158.
[69] Yao Tandong, Jiao Keqin, Huang Cuilan, et al. Environmental records in ice cores and their spatial coupling features [J]. Quaternary Science, 1995, 15(1): 23-31. [姚檀栋, 焦克勤, 皇翠兰, 等. 冰芯所记录的环境变化及空间耦合特征[J]. 第四纪研究, 1995, 15(1): 23-31.]
[70] Zhang Deer. Preliminary study on synoptic climatology of historical dust in China [J]. Science in China (B), 1984, 14(3): 278-288. [张德二. 我国自历史时期以来降尘的天气气候学初步分析[J]. 中国科学(B), 1984, 14(3): 278-288.]
[71] Yao Tandong, Qin Dahe, Huang Cuilan, et al. The main cations and environmental changes in Guliya ice core since the Little Ice Age [A]. In: Annual Report of the Study on the Formation, Evolution, Environmental Changes and Ecosystem of the Qinghai-Tibet Plateau, 1994 [C]. Beijing: Science in China Press, 1995. 1-10. [姚檀栋, 秦大河, 皇翠兰, 等. 古里雅冰芯中的主要阳离子与小冰期以来的环境变化[A]. 见:青藏项目专家委员会编.青藏高原形成演化、环境变迁与生态系统研究学术论文年刊(1994) [C]. 北京: 科学出版社, 1995. 1-10.]
/
〈 |
|
〉 |