北太平洋中部赫斯海隆(Hess Rise) 晚第四纪以来生源组分与粉尘输入的关系及其变化机制*

  • 由德方 ,
  • 王汝建 ,
  • 肖文申
展开
  • 同济大学海洋地质国家重点实验室, 上海 200092

作者简介:由德方(1992-),男,山东青岛人,硕士研究生,主要从事极地古海洋与微体古生物学研究.E-mail:dfyou@tongji.edu.cn

*通信作者:王汝建(1959-),男,云南昆明人,教授,主要从事极地古海洋与古气候学研究.E-mail:rjwang@tongji.edu.cn

收稿日期: 2018-09-07

  修回日期: 2018-10-15

  网络出版日期: 2018-12-21

基金资助

国家自然科学基金项目“重建晚第四纪冰期—间冰期西北冰洋筏冰输运和表层洋流演变历史”(编号:41776187);南北极专项“2017年北极海域海洋地质考察”(编号:CHINARE2017-03-02)资助.

版权

, 2018,

Correlations Between Biogenic Components and Dust Input and Their Change Mechanism on Hess Rise, Central North Pacific, During the Late Quaternary*

  • Defang You ,
  • Rujian Wang ,
  • Wenshen Xiao
Expand
  • State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

First author: You Defang(1992-), male, Qingdao City, Shandong Province, Master student. Research areas include polar paleoceanography and micropaleontology. E-mail: dfyou@tongji.edu.cn

*Corresponding author: Wang Rujian(1959-), male, Kunming City, Yunnan Province, Professor. Research areas include polar paleoceanography and paleoclimate. E-mail: rjwang@tongji.edu.cn

Received date: 2018-09-07

  Revised date: 2018-10-15

  Online published: 2018-12-21

Supported by

Foundation item: Project supported by the National Natural Science Foundation of China "Reconstruction of the glacial-interglacial evolution history of ice raft transport and surface currents during the late quaternary" (No.41776187);The Arctic and Antarctic Special Fund "2017 Arctic Ocean marine geological survey" (No.CHINARE2017-03-02).

Copyright

地球科学进展 编辑部, 2018,

摘要

对海洋生产力的研究有助于理解大洋碳库的变化,粉尘输入则是影响海洋生产力的重要因子。对德国SO202-INOPEX航次在北太平洋中部赫斯海隆(Hess Rise)钻取的SO202-37-2孔0~251 cm沉积物样品进行了XRF元素扫描,碳酸钙、生物硅、有机碳、浮游有孔虫Globigerina bulloidesGloborotalia inflata氧碳同位素的综合分析,以期探讨该区域的生源组分特征及粉尘输入的变化历史。该孔的地层年代框架基于其浮游有孔虫G. inflata18O、G. bulloides18O与H3571孔G. inflata18O和深海氧同位素曲线LR04-δ18O的对比。结果显示,该孔XRF-Ti/Ca值所代表的陆源粉尘输入强度变化与生物硅含量显著相关,指示粉尘输入刺激了海洋生产力的提高,并呈现出间冰期增强、冰期减弱的特点。究其原因,可能是由于冰期时西风带南移远离物源区,导致粉尘输出减少,西风急流的经向移动控制了该区域海洋生产力的变化。尽管冰期时全球粉尘输出是增多的,但是西风急流的位置变化使得该区域的粉尘沉积记录与其他地区不完全相同。

本文引用格式

由德方 , 王汝建 , 肖文申 . 北太平洋中部赫斯海隆(Hess Rise) 晚第四纪以来生源组分与粉尘输入的关系及其变化机制*[J]. 地球科学进展, 2018 , 33(11) : 1203 -1214 . DOI: 10.11867/j.issn.1001-8166.2018.11.1203.

Abstract

The study of marine export production is helpful to trace the changes of oceanic and global carbon reservoirs. Dust input is an important factor inspiring marine export production. Measurements of carbonate, Opal, TOC and Corg/N were performed on Core SO202-37-2, which was retrieved from Hess Rise, central North Pacific during the German SO202-INOPEX Expedition, for reconstructing variations of the local export production and dust input. The core age model is constructed via morphologically correlating its foraminifer oxygen isotope record with those of Core H3571 and the LR04 stack. XRF-Ti/Ca can be used as a proxy for dust input and its distribution pattern is consistent with that of Opal content, possibly indicating that dust input may have affected the local export production, i.e. the local export production increased (decreased) with enhancing (declining) dust input during interglacial (glacial) periods. Fluctuations in dust input might be due to southward/northward migration of the Westerly Jet over the dust source regions during interglacial and glacial periods. Although global dust output increased during glacial periods, meridional migration of the Westerly Jet in this area made the distribution pattern of the dust deposition in the study area different from that of other areas.

参考文献

[1] Windom H L.Eolian contributions to marine sediments[J]. Journal of Sedimentary Research, 1975, 45(2): 520-529.
[2] Nakai S, Halliday A N, Rea D K.Provenance of dust in the Pacific Ocean[J]. Earth and Planetary Science Letters, 1993, 119(1/2): 143-157.
[3] Lu Jia, Wang Liqiang.Research progress of dust emission in Asia[J]. Journal of Anhui Agricultural Sciences, 2011, 39(32): 19 813-19 817.
[3] [卢佳, 王立强. 亚洲粉尘释放的研究进展[J]. 安徽农业科学, 2011, 39(32): 19 813-19 817.]
[4] Wefer G, Fischer G.Seasonal patterns of vertical particle flux in equatorial and coastal upwelling areas of the eastern Atlantic[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1993, 40(8): 1 613-1 645.
[5] Kawahata H, Okamoto T, Matsumoto E, et al. Fluctuations of eolian flux and ocean productivity in the mid-latitude north Pacific during the last 200 kyr[J]. Quaternary Science Reviews, 2000, 19(13): 1 279-1 291.
[6] Rea D K, Leinen M, Janecek T R.Geologic approach to the long-term history of atmospheric circulation[J]. Science, 1985, 227(4 688): 721.
[7] Nemoto K, Kroenke L W.Marine geology of the Hess Rise: 1. Bathymetry, surface sediment distribution, and environment of deposition[J]. Journal of Geophysical Research Solid Earth, 1981, 86(B11): 10 734-10 752.
[8] Vallier T L, Dean W E, Rea D K, et al. Geologic evolution of Hess Rise, central North Pacific Ocean[J]. Geological Society of America Bulletin, 1983, 94(11): 1 289.
[9] Gersonde R.The expedition of the research vessel "Sonne" to the subpolar North Pacific and the Bering Sea in 2009 (SO202-INOPEX)[J]. Reports on Polar and Marine Research, 2012, 643. DOI:10.2312/BzPM_0643_2012.
[10] Jaccard S L, Haug G H, Sigman D M, et al. Glacial/interglacial changes in subarctic North Pacific stratification[J]. Science, 2005, 308(5 724): 1 003-1 006.
[11] Hovan S A, Rea D K, Pisias N G.Late Pleistocene continental climate and oceanic variability recorded in Northwest Pacific sediments[J]. Paleoceanography, 1991, 6: 349-370.
[12] Ujiié H.A 370-ka paleoceanographic record from the Hess Rise, central North Pacific Ocean, and an indistinct 'Kuroshio Extension'[J]. Marine Micropaleontology, 2003, 49(1/2): 21-47.
[13] Sun Xiangping.A comparison of characteristics between the subtropical countercurrent, the north equatorial current and the north equatorial countercurrent in the Northwestern Pacific Ocean[J]. Journal of Oceanography of Huanghai and Bohai Seas, 2000, 18(1): 1-12.
[13] [孙湘平. 西北太平洋副热带逆流、北赤道流、北赤道逆流几个特征的比较[J]. 黄渤海海洋学报, 2000, 18(1): 1-12.]
[14] Nagashima K, Tada R, Matsui H, et al. Orbital- and millenial-scale variations in Asian dust transport path to the Japan Sea[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2007, 247(1): 144-161.
[15] Serno S, Winckler G, Anderson R F, et al. Change in dust seasonality as the primary driver for orbital-scale dust storm variability in East Asia[J]. Geophysical Research Letter, 2017, 44: 3 796-3 805.
[16] Ma Jing, Xu Haiming.The relationship between meridional displacement of the oceanic front in Kuroshio extension during spring and atmospheric circulation in East Asia[J]. Journal of the Meteorological Sciences, 2012, 32(4): 375-384.
[16] [马静, 徐海明. 春季黑潮延伸体海洋锋区经向位移与东亚大气环流的关系[J]. 气象科学, 2012, 32(4): 375-384.]
[17] Wu Boyu.Kuroshio current-Ⅲ kuroshio current plankton and others[J]. Marine Bulletin, 1986, (3): 78-82.
[17] [伍伯瑜. 黑潮流系-Ⅲ黑潮流系的浮游生物及其他[J]. 海洋通报, 1986, (3): 78-82.]
[18] Kuehn H, Lembkejene L, Gersonde R, et al. Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation[J]. Climate of the Past Discussions, 2014, 10(3):2 215-2 236.
[19] Tian Jun, Wang Pinxian, Cheng Xinrong.Stable isotope equilibrium test between benthic foraminifer Cibicidoides and Uvigerina at ODP Site 1143, Southern South China Sea[J]. Earth ScienceJournal of China University of Geoscience, 2004, 29(1):1-6.
[19] [田军, 汪品先, 成鑫荣. 南海ODP1143站底栖有孔虫CibicidoidesUvigerina稳定氧碳同位素值的均衡实验[J]. 地球科学——中国地质大学学报, 2004, 29(1):1-6.]
[20] Mortlock R A, Froelich P N.A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1989, 36(9): 1 415-1 426.
[21] Sun Yechen, Wang Rujian, Xiao Wenshen, et al. Biogenic and terrigenous coarse fractions in surface sediments of the western Arctic Ocean and their sedimentary environments[J]. Acta Oceanologica Sinica, 2011, 33(2): 103-114.
[21] [孙烨忱, 王汝建, 肖文申, 等. 西北冰洋表层沉积物中生源和陆源粗组分及其沉积环境[J]. 海洋学报, 2011, 33(2): 103-114.]
[22] Zhang Haifeng, Wang Rujian, Sun Yechen, et al. Distribution pattern of biogenic components in surface sediments of the northern Bering Sea and their paleoceanographic implications[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 79-87.
[22] [张海峰, 王汝建, 孙烨忱, 等. 白令海北部表层沉积物中的生源组分分布特征及其古海洋学意义[J]. 海洋地质与第四纪地质, 2011, 31(5): 79-87.]
[23] Yang Shouye, Li Congxian.Compositions of organic elements and carbonate in the late Cenozoic sediments of the Changjiang Delta: Implication for paleoenvironmental changes[J]. Geochimica, 2006, 35(3):249-256.
[23] [杨守业, 李从先. 长江三角洲晚新生代沉积物有机碳、总氮和碳酸盐组成及古环境意义[J]. 地球化学, 2006, 35(3):249-256.]
[24] Lisiecki L E, Raymo M E.A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20(1). DOI: 10.1029/2004PA001071
[25] Woodard S C, Thomas D J, Hovan S, et al. Evidence for orbital forcing of dust accumulation during the early Paleogene greenhouse[J]. Geochemistry Geophysics Geosystems, 2013, 12(2): 364-371.
[26] Rea D K, Hovan S A.Grain size distribution and depositional processes of the mineral component of abyssal sediments: Lessons from the North Pacific[J]. Paleoceanography, 1995, 10(2): 251-258.
[27] Raiswell R.Towards a global highly reactive iron cycle[J]. Journal of Geochemical Exploration, 2006, 88: 436-439.
[28] Deng Weibin, Hu Daquan, Tang Xingyan, et al.SPSS 19 (Chinese Edition) Statistical Analysis Practical Guide[M]. Beijing: Publishing House of Electronics Industry, 2012: 494-502.
[28] [邓维斌, 胡大权, 唐兴艳, 等. SPSS 19 (中文版) 统计分析实用教程[M]. 北京: 电子工业出版社, 2012: 494-502.]
[29] Bonn W J, Gingele F X, Grobe H, et al. Paleoproductivity at the Antarctic continental margin: Opal and barium records of the last 400 kyr[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1998, 139(3/4): 195-211.
[30] Murray R W, Leinen M, Isern A R.Biogenic flux of Al to sediment in the central eqatorial Pacific Ocean: Evidence for increased productivity during glacial periods[J]. Paleoceanography, 1993, 8(5): 651-670.
[31] Murray R W, Knowlton C, Leinen M, et al. Export production and carbonate dissolution in the central equatorial Pacific Ocean over the past 1 Myr[J]. Paleoceanography, 2000, 15(6): 570-592.
[32] Winckler G, Anderson R F, Schlosser P.Equatorial Pacific productivity and dust flux during the mid-Pleistocene climate transition[J]. Paleoceanography, 2005, 20(4): 347-356.
[33] Waelbroeck C, Pichat S, Evelyn B?hm, et al. Relative timing of precipitation and ocean circulation changes in the western equatorial Atlantic over the last 45 ky[J]. Climate of the Past Discussions, 2018,14:1 315-1 330.
[34] Francesca Vallé, Westerhold T, Dupont L M.Orbital-driven environmental changes recorded at ODP Site 959 (eastern equatorial Atlantic) from the Late Miocene to the Early Pleistocene[J]. International Journal of Earth Sciences, 2017, 106(3):1 161-1 174.
[35] Wang Rujian, Jian Zhimin, Xiao Wenshen, et al. The correlations between the east Asian monsoon, the world Ice volume, orbital drive and Opal record in the South China Sea during Quaternary[J]. Science in China (Series D), 2007, 37(4): 521-533.
[35] [王汝建, 翦知湣, 肖文申, 等. 南海第四纪的生源蛋白石记录: 与东亚季风、全球冰量和轨道驱动的联系[J]. 中国科学:D辑, 2007, 37(4): 521-533.]
[36] Wang Rujian, Xiao Wenshen, Xiang Fei, et al. Distribution pattern of biogenic components in surface sediments of the weatern Arctic Ocean and their palaeoceanographic implications[J]. Marine Geology & Quaternary Geology, 2007, 27(6): 61-69.
[36] [王汝建, 肖文申, 向霏, 等. 北冰洋西部表层沉积物中生源组分及其古海洋学意义[J]. 海洋地质与第四纪地质, 2007, 27(6): 61-69.]
[37] Lam P J, Bishop J K B. The continental margin is a key source of iron to the HNLC North Pacific Ocean[J]. Geophysical Research Letters, 2008, 35(7): 521-539.
[38] Bordiga M, Cobianchi M, Lupi C, et al. Coccolithophore carbonate during the last 450 ka in the NW Pacific Ocean (ODP site 1209B, Shatsky Rise)[J]. Journal of Quaternary Science, 2014, 29(1): 57-69.
[39] Martin J H, Coale K H, Johnson K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean[J]. Nature, 1994, 371(6 493): 123-129.
[40] Zhang Jiangyong, Wang Pinxian, Li Qianyu, et al. Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A[J]. Marine Micropaleontology, 2007, 64(3/4): 121-140.
[41] Kennedy P, Kennedy H, Papadimitriou S.The effect of acidification on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment[J]. Rapid Communications in Mass Spectrometry, 2005, 19(8): 1 063-1 068.
[42] Zhang Haifeng, Wang Rujian, Sun Yechen, et al. Distribution pattern of biogenic components in surface sediments of northern Bering Sea and their palaeoceanographic implications[J]. Marine Geology & Quaternary Geology, 2011, 31(5): 79-87.
[42] [张海峰, 王汝建, 孙烨忱, 等. 白令海北部表层沉积物中的生源组分分布特征及其古海洋学意义[J]. 海洋地质与第四纪地质, 2011, 31(5): 79-87.]
[43] Thunell R C, Miao Q, Calvert S E, et al. Glacial-holocene biogenic sedimentation patterns in the South China Sea: Productivity variations and surface water pCO2[J]. Paleoceanography, 1992, 7(2): 143-162.
[44] Hedges J I, Clark W A, Quay P D, et al. Compositions and fluxes of particulate organic material in the Amazon River[J]. Limnology & Oceanography, 1986, 31(4): 717-738.
[45] Ruth U, Bigler M, R?thlisberger R, et al. Ice core evidence for a very tight link between North Atlantic and east Asian glacial climate[J]. Geophysical Research Letters, 2007, 34(3): 116-142.
[46] Xiao Jule, Porter S C, An Zhisheng, et al. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of Central China during the last 130,000 yr[J]. Quaternary Research, 1995, 43(1): 22-29.
[47] Serno S, Winckler G, Anderson R F, et al. Eolian dust input to the Subarctic North Pacific[J]. Earth & Planetary Science Letters, 2014, 387(1): 252-263.
[48] Sun Donghuai, Su Ruixia, Bloemendal J, et al. Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China: Implications for variations in the East Asian winter monsoon and westerly atmospheric circulation[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2008, 264(1/2): 39-53.
[49] Sun Donghuai, An Zhisheng, Su Ruixia, et al. Dust deposition records of the recent 2.6 Ma monsoon circulation and westerly circulation in northern China[J]. Science in China (Series D), 2003, 33(6): 497-504.
[49] [孙东怀, 安芷生, 苏瑞侠, 等. 最近2.6 Ma中国北方季风环流与西风环流演变的风尘沉积记录[J]. 中国科学: D辑, 2003, 33(6): 497-504.]
[50] Zhang Yaocun, Kuang Xueyuan, Guo Weidong, et al. Seasonal evolution of the upper-tropospheric westerly jet core over East Asia[J]. Geophysical Research Letters, 2006, 33(11): 317-324.
[51] Sun Jimin.Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J]. Earth & Planetary Science Letters, 2002, 203(3/4): 845-859.
[52] Mingram J, Schettler G, Nowaczyk N, et al. The Huguang Maar Lake—A high-resolution record of palaeoenvironmental and palaeoclimatic changes over the last 78,000 years from South China[J]. Quaternary International, 2004, 122(1):85-107.
[53] Qu Wenjun, Zhang Xiaoye, Wang Dan, et al. The important significance of westerly wind study[J]. Marine Geology & Quaternary Geology, 2004, 24(1):125-132.
[53] [屈文军, 张小曳, 王丹, 等. 西风带研究的重要意义[J]. 海洋地质与第四纪地质, 2004, 24(1):125-132.]
文章导航

/