综述与评述

全球变化背景下半干旱区陆气机制研究综述

  • 管晓丹 ,
  • 石瑞 ,
  • 孔祥宁 ,
  • 刘婧晨 ,
  • 甘泽文 ,
  • 马洁茹 ,
  • 罗雯 ,
  • 曹陈宇
展开
  • 兰州大学大气科学学院,半干旱气候变化教育部重点实验室,甘肃 兰州 730000

作者简介:管晓丹(1983-),女,吉林通化人,教授,主要从事半干旱区气候研究.E-mail:guanxd@lzu.edu.cn

收稿日期: 2018-04-02

  修回日期: 2018-09-02

  网络出版日期: 2018-11-16

基金资助

国家自然科学基金优秀青年科学基金项目“全球变化背景下半干旱陆气机制研究”(编号:41722502);国家自然科学基金面上项目“增温停滞对我国干湿变化的影响”(编号:41575006)资助.

版权

, 2018,

An Overview of Researches on Land-Atmosphere Interaction over Semi-Arid Region Under Global Changes

  • Xiaodan Guan ,
  • Rui Shi ,
  • Xiangning Kong ,
  • Jingchen Liu ,
  • Zewen Gan ,
  • Jieru Ma ,
  • Wen Luo ,
  • Chenyu Cao
Expand
  • Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000,China

First author:Guan Xiaodan(1983-),female,Tonghua County,Jilin Province,Professor. Research areas include climate in semi-arid region.E-mail:guanxd@lzu.edu.cn

Received date: 2018-04-02

  Revised date: 2018-09-02

  Online published: 2018-11-16

Supported by

Project supported by the National Natural Science Foundation of China "Study on semi-arid land-atmosphere mechanism under the global change" (No.41722502) and "Impact of global warming hiatus on the dry-wet change in China" (No.41575006).

Copyright

地球科学进展 编辑部, 2018,

摘要

半干旱区作为全球陆地的重要组成部分,在全球气候变化过程中发挥着不可忽视的作用。现代气候变化过程中,半干旱区受局地人类活动影响显著,表现出百年尺度的面积扩张及年代际的干湿周期变化。归纳近年来国内外全球半干旱区气候变化的研究成果,对以往半干旱区主要陆面观测计划进行回顾,重点分类总结陆气相互作用在半干旱气候变化过程中发挥的作用;包括半干旱区陆气相互作用中的能量循环、水循环和碳循环等变化特征,以及模式对半干旱区陆气特征的历史模拟和未来预测。随着半干旱区干旱化的加剧,未来的局地陆气相互作用将出现新的变化特征,需要进一步加强对半干旱区陆气相互作用机制的认识,从多方向推进半干旱区陆气相互作用对区域气候影响的研究。

本文引用格式

管晓丹 , 石瑞 , 孔祥宁 , 刘婧晨 , 甘泽文 , 马洁茹 , 罗雯 , 曹陈宇 . 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018 , 33(10) : 995 -1004 . DOI: 10.11867/j.issn.1001-8166.2018.10.0995.

Abstract

The semi-arid region, as a key part of global land, plays an important role in climate change. In the process of modern climate change, the semi-arid region is significantly affected by local human activities, showing remarkable expansion and obvious decadal variations. In this paper, we summarized the studies of the land-atmosphere interaction in the semi-arid regions in recent years, and major land surface observation plans. We put emphasis on energy balance, water cycle, carbon cycle in land-atmosphere interaction of climate change, and their performance in historical simulation and future prediction. The prediction results illustrate that new character of land-atmosphere interaction will appear as the drying of drylands in the future. Therefore, it is necessary to deepen the understanding of land-atmosphere interaction and move forward energetically on research in regional climate from different aspects.

参考文献

[1] Huang J, Ji M, Xie Y,et al. Global semi-arid climate change over last 60 years[J]. Climate Dynamics, 2016, 46(3/4): 1 131-1 150. DOI:10.1007/s00382-015-2636-8.
[2] Huang Jianping, Ji Mingxia, Liu Yuzhi,et al. An overview of arid and semi-arid climate change[J]. Advances in Climate Change Research, 2013, 9(1):9-14.
[2] [黄建平, 季明霞, 刘玉芝, 等. 干旱半干旱区气候变化研究综述[J]. 气候变化研究进展, 2013, 9(1):9-14.]
[3] Wang Jiemin.Land surface process experiments and interaction study in China—From HEIFE to IMGRASS and GAME-Tibet/TIPEX[J]. Plateau Meteorology, 1999, 18(3):280-294.
[3] [王介民. 陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象, 1999, 18(3):280-294.]
[4] Huang J, Li Y, Fu C, et al. Dryland climate change recent progress and challenges[J]. Reviews of Geophysics, 2017, 55: 719-778. DOI:10.1002/2016RG000550.
[5] IPCC. Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013: 95-123.
[6] Huang J, Guan X, Ji F.Enhanced cold-season warming in semi-arid regions[J]. Atmospheric Chemistry and Physics, 2012, 12(12): 5 391-5 398. DOI:10.5194/acp-12-5391-2012.
[7] Greve P, Orlowsky B, Mueller B, et al. Global assessment of trends in wetting and drying over land[J]. Nature Geoscience, 2014, 7(10):716-721. DOI:10.1038/NGEO2247.
[8] Cai W, Cowan T, Thatcher T.Rainfall reductions over southern hemisphere semi-arid regions: The role of subtropical dry zone expansion[J]. Scientific Reports, 2012, 2:702. DOI:10.1038/srep00702.
[9] Feng S, Fu Q.Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics, 2013, 13(19): 10 081-10 094. DOI:10.5194/acp-13-10081-2013.
[10] Fu Congbin, Ma Zhuguo.Global change and regional aridification[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4):752-760.
[10] [符淙斌, 马柱国. 全球变化与区域干旱化[J]. 大气科学, 2008, 32(4):752-760.]
[11] Ma Zhuguo, Fu Congbin.Decadal variations of arid and semi-arid boundary in China[J]. Chinese Journal of Geophysics, 2005, 48(3):519-525.
[11] [马柱国, 符淙斌. 中国干旱和半干旱带的10年际演变特征[J]. 地球物理学报, 2005, 48(3):519-525.]
[12] Li Y, Huang J, Ji M, et al. Dryland expansion in Northern China from 1948 to 2008[J]. Advances in Atmospheric Sciences, 2015, 32(6):870-876.
[13] Huang J, Xie Y, Guan X, et al. The dynamics of the warming hiatus over the Northern Hemisphere[J]. Climate Dynamics, 2017, 48(1/2):429-446. DOI:10.1007/s00382-016-3085-8.
[14] Guan X, Huang J, Guo R, et al. Role of radiatively forced temperature changes in enhanced semi-arid warming in the cold season over east Asia[J]. Atmospheric Chemistry and Physics, 2015, 15(23):13 777-13 786.
[15] Guan X, Huang J, Guo R.Changes in aridity in response to the global warming hiatus[J]. Journal of Meteorological Research, 2017, 31(1):117-125.
[16] Luo Yong, Wang Shaowu, Dang Hongyan, et al. Recent advances in climate models and model intercomparison projects[J]. Advances in Earth Science, 2002, 17(3):372-373.
[16] [罗勇, 王绍武, 党鸿雁, 等. 近20年来气候模式的发展与模式比较计划[J]. 地球科学进展, 2002, 17(3):372-373.]
[17] Chen Haishan, Sun Zhaobo.Review of land-atmosphere interaction and land surface model studies[J]. Journal of Nanjing Institute of Meteorology, 2002, 25(2):277-288.
[17] [陈海山, 孙照渤. 陆气相互作用及陆面模式的研究进展[J]. 南京气象学院学报, 2002, 25(2):277-288.]
[18] Zhang Qiang, Huang Ronghui, Wang Sheng, et al. NWC-ALIEX and its research advances[J]. Advances in Earth Science, 2005, 20(4):427-441.
[18] [张强, 黄荣辉, 王胜, 等. 西北干旱区陆—气相互作用试验(NWC-ALIEX)及其研究进展[J]. 地球科学进展, 2005, 20(4):427-441.]
[19] Liu Huizhi, Dong Wenjie, Fu Congbin, et al. The long-term field experiments on aridfication and the ordered human activity in semi-arid area at Tongyu, Northeast China[J]. Climatic and Environmental Research, 2004, 9(2):378-389.
[19] [刘辉志, 董文杰, 符淙斌, 等. 半干旱地区吉林通榆“干旱化和有序人类活动”长期观测实验[J]. 气候与环境研究, 2004, 9(2):378-389.]
[20] Huang J, Zhang W, Zuo J, et al. An overview of the semi-arid climate and environment research observatory over the Loess Plateau[J]. Advances in Atmospheric Sciences, 2008, 25(6): 1-16. DOI:10.1007/s00376-008-0906-7.
[21] Xiao Xia, Zuo Hongchao, Liu Huizhi, et al. Observational study of the surface energy closure in the semi-arid regions of Loess Plateau in late spring[J]. Journal of Glaciology and Geocryology, 2010, 32(1):70-77.
[21] [肖霞, 左洪超, 刘辉志, 等. 春末黄土高原半干旱区地表能量闭合的观测研究[J]. 冰川冻土, 2010, 32(1):70-77.]
[22] Seneviratne S I, Corti T, Davin E L, et al. Investigating soil moisture-climate interactions in a changing climate: A review[J]. Earth-Science Reviews, 2010, 99(3/4):125-161.
[23] Cheng S, Guan X, Huang J, et al. Long-term trend and variability of soil moisture over East Asia[J]. Journal of Geophysical Research Atmospheres, 2015, 120(17):8 658-8 670.
[24] Bing Longfei, Su Hongbo, Shao Quanqin, et al. Changing characteristic of land surface evapotranspiration and soil moisture in China during the past 30 years[J]. Journal of Geo-Information Science, 2012, 14(1):1-13.
[24] [邴龙飞, 苏红波, 邵全琴, 等. 近30年来中国陆地蒸散量和土壤水份变化特征分析[J]. 地球信息科学学报, 2012, 14(1):1-13.]
[25] Brubaker K L, Entekhabi D, Eagleson P S.Estimation of continental precipitation recycling[J]. Journal of Climate, 1993, 6(6):1 077-1 089.
[26] Zhang Shuwen, Liu Yuan, Cao Bangjun, et al. Soil moisture-precitation coupling and trends in China, based on GLDAS and CMIP5 products[J]. Climatic and Environmental Research, 2016, 21(2):188-196.
[26] [张述文, 刘源, 曹帮军, 等. GLDAS和CMIP5产品的中国土壤湿度—降水耦合分析及变化趋势[J]. 气候与环境研究, 2016, 21(2):188-196.]
[27] Hohenegger C, Brockhaus P, Bretherton C S, et al. The soil moisture-precipitation feedback in simulations with explicit and parameterized convection[J]. Journal of Climate, 2009, 22(19):5 003-5 020.
[28] Ma Zhuguo, Fu Congbin, Xie Li, et al. Some problems in the study on the relationship between soil moisture and climate change[J]. Advance in Earth Sciences, 2001, 16(4):563-568.
[28] [马柱国, 符淙斌, 谢力, 等. 土壤湿度和气候变化关系研究中的某些问题[J]. 地球科学进展, 2001, 16(4):563-568.]
[29] Guo Weidong, Ma Zhuguo, Wang Huijun.Soil moisture-an important factor of seasonal precipitation prediction and its application[J]. Climatic and Environmental Research, 2007, 12(1):20-28.
[29] [郭维栋, 马柱国, 王会军. 土壤湿度——一个跨季度降水预测中的重要因子及其应用探讨[J]. 气候与环境研究, 2007, 12(1):20-28.]
[30] Burba G G, Verma S B, Kim J.Surface energy fluxes of Phragmites Australis, in a prairie wetland[J]. Agricultural and Forest Meteorology, 1999, 94(1):31-51.
[31] Zeng Jian, Zhang Qiang, Wang Sheng.Regional differences in the characteristics of clear sky land surface processes in distinct climatic zones over Northern China[J]. Chinese Journal of Atmospheric Sciences, 2011, 35(3):483-494.
[31] [曾剑, 张强, 王胜. 中国北方不同气候区晴天陆面过程区域特征差异[J]. 大气科学, 2011, 35(3):483-494.]
[32] Zhang Qiang, Zhang Liang, Huang Jing, et al. Spatial distribution of surface energy fluxes over the Loess Plateau in China and its relationship with climate and the environment[J]. Science in China (Series D), 2014, 57(9): 2 135-2 147.
[32] [张强, 张良, 黄菁, 等. 我国黄土高原地区陆面能量的空间分布规律及其与气候环境的关系[J]. 中国科学:D辑, 2014, 44(9):2 062-2 076.]
[33] Hui Xiaoying, Wang Chenghai, Zuo Hongchao, et al. Abnormal features of sensible and latent heat fluxes in arid region of Northern China[J]. Plateau Meteorology, 2005, 24(3):415-421.
[33] [惠小英, 王澄海, 左洪超, 等. 中国北方干旱区感热及潜热的异常特征[J]. 高原气象, 2005, 24(3):415-421.]
[34] Meng L, Shen Y.On the relationship of soil moisture and extreme temperatures in East China[J]. Earth Interactions, 2014, 18(1):1-20.
[35] Chen Qingqiang, Shen Chengde, Yi Weixi, et al. Progresses in soil carbon cycle researches[J]. Advances in Earth Science, 1998, 13(6):555-563.
[35] [陈庆强, 沈承德, 易惟熙, 等. 土壤碳循环研究进展[J]. 地球科学进展, 1998, 13(6):555-563.]
[36] Maestre F T, Escolar C, Guevara M L D, et al. Changes in biocrust cover drive carbon cycle responses to climate change in drylands[J]. Global Change Biology, 2013, 19(12):3 835.
[37] Davidson E A, Janssens I A.Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440(7 081):165.
[38] Poulter B, Frank D, Ciais P, et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle[J]. Nature, 2014, 509(7 502):600-603.
[39] Rotenberg E, Yakir D.Contribution of semi-arid forests to the climate system[J]. Science, 2010, 327(5 964):451.
[40] Grace J, Jose J S, Meir P, et al. Productivity and carbon fluxes of tropical savannas[J]. Journal of Biogeography, 2010, 33(3):387-400.
[41] Wang Xinyuan, Li Yulin, Zhao Xueyong, et al. Responses of soil respiration to different factors in semi-arid and arid areas[J]. Acta Ecologica Sinica, 2012, 32(15):4 890-4 901.
[41] [王新源, 李玉霖, 赵学勇, 等. 干旱半干旱区不同环境因素对土壤呼吸影响研究进展[J]. 生态学报, 2012, 32(15):4 890-4 901.]
[42] Fu Y, Yu G, Wang Y, et al. Effect of water stress on ecosystem photosynthesis and respiration of a Leymus chinensis, steppe in Inner Mongolia[J]. Science in China (Series D), 2006, 49(Suppl.2):196-206.
[43] Zhou Ping, Liu Guobin, Xue Sha.Review of soil respiration and the impact factors on grassland ecosystem[J]. Acta Prataculturae Sinica, 2009, 18(2):184-193.
[43] [周萍, 刘国彬, 薛萐. 草地生态系统土壤呼吸及其影响因素研究进展[J]. 草业学报, 2009, 18(2):184-193.]
[44] Wang Wei, Zhang Ying.Advances in research on land surface processes model[J]. Meteorology and Disaster Reduction Research, 2010, 33(3): 1-6.
[44] [汪薇, 张瑛. 陆面过程模式的研究进展简介[J]. 气象与减灾研究, 2010, 33(3):1-6.]
[45] Huang J, Yu H, Guan X, et al. Accelerated dryland expansion under climate change[J]. Nature Climate Change, 2016,6:166-171. DOI:10.1038/nclimate2837.
[46] Zhao T, Dai A.Uncertainties in historical changes and future projections of drought. Part II: Model-simulated historical and future drought changes[J]. Climatic Change, 2017, 144:535-548. DOI:10.1007/s10584-016-1742-x.
[47] Ji M, Huang J, Xie Y, et al. Comparison of dryland climate change in observations and CMIP5 simulations[J]. Advances in Atmospheric Sciences, 2015, 32(11):1 565-1 574. DOI: 10.1007/s00376-015-4267-8.
[48] Scheff J, Frierson D M W. Terrestrial aridity and its response to greenhouse warming across CMIP5 Climate Models[J]. Journal of Climate, 2015, 28(14):150427110053004.
[49] Feng S, Hu Q, Huang W, et al. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations[J]. Global and Planetary Change, 2014, 112(1):41-52.
[50] Scheff J, Frierson D M W. Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zones[J]. Geophysical Research Letters, 2012, 39(18):18 704.
[51] Schlaepfer D R, Bradford J B, Lauenroth W K, et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils[J]. Nature Communications, 2017, 8:14 196.
[52] Huang J, Huang J, Liu X, et al. The global oxygen budget and its future projection[J]. Science Bulletin, 2018.DOI:10.1016/j.scib.2018.07.023.
文章导航

/