作者简介:王芳慧(1991-),女,河南濮阳人,博士研究生,主要从事微生物气溶胶研究.E-mail:16210740014@fudan.edu.cn
收稿日期: 2018-04-02
修回日期: 2018-06-06
网络出版日期: 2018-09-14
基金资助
国家重点研发计划项目“海洋生源活性气体在大气中的迁移转化及气候效应”(编号:2016YFA0601304);国家自然科学基金项目“东海微生物气溶胶的丰度和群落结构变化及影响机制”(编号:41775145)资助.
版权
Abundance and Community Structure of Airborne Microorganisms over the Ocean and Their Influencing Mechanisms
First author: Wang Fanghui(1991-), female, Puyang City, He'nan Province, Ph. D student. Research areas include airborne microorganisms. E-mail: 16210740014@fudan.edu.cn
Received date: 2018-04-02
Revised date: 2018-06-06
Online published: 2018-09-14
Supported by
Project supported by the National Key Research and Development Program of China “Transport and transformation of marine biogenic reactive gas in the atmosphere and their climate effects” (No.2016YFA0601304);The National Natural Science Foundation of China “Variation of abundance and community structure of airborne microorganisms and affecting mechanism over the East China Sea” (No.41775145).
Copyright
微生物气溶胶在微生物传播和生态系统多样性维护上发挥着核心作用,并且可成为有效的冰核(IN)和云凝结核(CCN)对气候产生显著影响。海洋是大气中微生物的重要源和汇,然而,关于海洋微生物气溶胶丰度和多样性分布的信息知之甚少。系统梳理了已研究报道的海洋微生物气溶胶的丰度、粒径分布和群落结构,以及影响其分布的各种环境和气象因素;列出了微生物气溶胶的常用测定方法及发展态势;最后指出该研究领域亟待解决的问题和未来方向,包括建立标准的海洋微生物气溶胶采集和处理技术,增加开阔大洋的航次观测资料,采用先进的分子生物学技术与传统分析手段结合等。为后续海洋微生物气溶胶的深入研究,揭示其来源、活性、气候和生态效应提供了全面重要的信息。
王芳慧 , 陈莹 , 王波 , 李好文 , 周升钱 . 海洋微生物气溶胶的丰度、群落结构及影响机制[J]. 地球科学进展, 2018 , 33(8) : 783 -793 . DOI: 10.11867/j.issn.1001-8166.2018.08.0783
Airborne microorganisms play an essential role in the microbial propagation and maintenance of the ecosystem diversity, and also significantly affect the climate by acting as effective Ice Nucleus (IN) and Cloud Condensation Nuclei (CCN). The ocean is a vital source and destination for airborne microbes. Nevertheless, little information has been obtained on the distribution of abundance and diversity of airborne microorganisms over the ocean. This paper systematically reviewed the abundance, size distribution, and community structure of airborne microorganisms over the ocean, as well as various environmental and meteorological factors that control the distribution of microbes in marine aerosols. The commonly used methods for detecting airborne microorganisms and their development prospects were also discussed. We pointed out that sampling and detection of extremely low concentration microorganisms in marine aerosols are key problems to be solved in this field, and future research directions include the increase of the cruising observation in open oceans and combination of advanced molecular techniques and other traditional methods. This paper provides extensive and crucial information for subsequently in-depth research on airborne microorganisms over the ocean, revealing their sources, activities, climate and ecological effects.
[1] | Seifried J S, Wichels A, Gerdts G.Spatial distribution of marine airborne bacterial communities[J]. Microbiologyopen, 2015, 4(3): 475-490. |
[2] | Prospero J M, Blades E, Mathison G, et al. Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust[J]. Aerobiologia, 2005, 21(1): 1-19. |
[3] | Mayol E, Jimenez M A, Herndl G J, et al. Resolving the abundance and air-sea fluxes of airborne microorganisms in the North Atlantic Ocean[J]. Frontiers in Microbiology, 2014, 5: 557. DOI: 10.3389/fmicb.2014.00557. |
[4] | Xu Z, Wu Y, Shen F, et al. Bioaerosol science, technology, and engineering: Past, present, and future[J]. Aerosol Science and Technology, 2011, 45(11): 1 337-1 349. |
[5] | Smets W, Moretti S, Denys S, et al. Airborne bacteria in the atmosphere: Presence, purpose, and potential[J]. Atmospheric Environment, 2016, 139: 214-221. DOI: 10.1016/j.atmosenv.2016.05.038. |
[6] | ?antl-Temkiv T, Sahyoun M, Finster K, et al. Characterization of airborne ice-nucleation-active bacteria and bacterial fragments[J]. Atmospheric Environment, 2015, 109: 105-117. DOI: 10.1016/j.atmosenv.2015.02.060. |
[7] | Després V, Huffman J A, Burrows S M, et al. Primary biological aerosol particles in the atmosphere: A review[J]. Tellus B: Chemical and Physical Meteorology, 2012, 64(1): 15 598. |
[8] | Delort A-M, Va?tilingom M, Amato P, et al. A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes[J]. Atmospheric Research, 2010, 98(2/4): 249-260. |
[9] | Bowers R M, Lauber C L, Wiedinmyer C, et al. Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei[J]. Applied and Environmental Microbiology, 2009, 75(15): 5 121-5 130. |
[10] | Amato P, Parazols M, Sancelme M, et al. Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dome: Major groups and growth abilities at low temperatures[J]. FEMS Microbiology Ecology, 2007, 59(2): 242-254. |
[11] | Va?tilingom M, Attard E, Gaiani N, et al. Long-term features of cloud microbiology at the puy de D?me (France)[J]. Atmospheric Environment, 2012, 56: 88-100.DOI: 10.1016/j.atmosenv.2012.03.072. |
[12] | Spracklen D V, Heald C L.The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates[J]. Atmospheric Chemistry and Physics, 2014, 14(17): 9 051-9 059. |
[13] | Wilson T W, Ladino L A, Alpert P A, et al. A marine biogenic source of atmospheric ice-nucleating particles[J]. Nature, 2015, 525(7 568): 234-238. |
[14] | M?hler O, DeMott P, Vali G, et al. Microbiology and atmospheric processes: The role of biological particles in cloud physics[J]. Biogeosciences, 2007, 4(6): 1 059-1 071. |
[15] | Mayol E, Arrieta J M, Jiménez M A, et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean[J]. Nature Communications, 2017, 8(1): 201. |
[16] | Aller J Y, Kuznetsova M R, Jahns C J, et al. The sea surface microlayer as a source of viral and bacterial enrichment in marine aerosols[J]. Journal of Aerosol Science, 2005, 36(5/6): 801-812. |
[17] | Fr?hlich-Nowoisky J, Burrows S M, Xie Z, et al. Biogeography in the air: Fungal diversity over land and oceans[J]. Biogeosciences, 2012, 9(3): 1 125-1 136. |
[18] | Maki T, Kakikawa M, Kobayashi F,et al. Assessment of composition and origin of airborne bacteria in the free troposphere over Japan[J]. Atmospheric Environment, 2013, 74: 73-82. DOI: 10.1016/j.atmosenv.2013.03.029. |
[19] | Zweifel U L, Hagstr?m ?, Holmfeldt K, et al. High bacterial 16S rRNA gene diversity above the atmospheric boundary layer[J]. Aerobiologia, 2012, 28(4): 481-498. |
[20] | Maki T, Hara K, Kobayashi F,et al. Vertical distribution of airborne bacterial communities in an Asian-dust downwind area, Noto Peninsula[J]. Atmospheric Environment, 2015, 119: 282-293. DOI: 10.1016/j.atmosenv.2015.08.052. |
[21] | Katra I, Arotsker L, Krasnov H, et al. Richness and diversity in dust stormborne biomes at the southeast mediterranean[J]. Scientific Reports, 2014, 4: 5 265. DOI: 10.1038/srep05265. |
[22] | Gat D, Mazar Y, Cytryn E, et al. Origin-dependent variations in the atmospheric microbiome community in eastern Mediterranean dust storms[J]. Environmental Science and Technology, 2017, 51(12): 6 709-6 718. |
[23] | Rahav E, Ovadia G, Paytan A, et al. Contribution of airborne microbes to bacterial production and N2 fixation in seawater upon aerosol deposition[J]. Geophysical Research Letters, 2016, 43(2): 719-727. |
[24] | Gandolfi I, Bertolini V, Ambrosini R,et al. Unravelling the bacterial diversity in the atmosphere[J]. Applied Microbiology Biotechnology, 2013, 97(11): 4 727-4 736. |
[25] | Yu J, Hu Q, Xie Z, et al. Concentration and size distribution of fungi aerosol over oceans along a cruise path during the fourth chinese arctic research expedition[J]. Atmosphere, 2013, 4: 337-348.DOI: 10.3390/atmos4040337. |
[26] | Li M, Yu X, Kang H, et al. Concentrations and size distributions of bacteria-containing particles over oceans from china to the arctic ocean[J]. Atmosphere, 2017, 8(5): 82.DOI: 10.3390/atmos8050082. |
[27] | Hu W, Murata K, Zhang D.Applicability of live/dead baclight stain with glutaraldehyde fixation for the measurement of bacterial abundance and viability in rainwater[J]. Journal of Environmental Sciences, 2017, 51: 202-213.DOI: 10.1016/j.jes.2016.05.030. |
[28] | Yuan H, Zhang D, Shi Y, et al. Cell concentration, viability and culture composition of airborne bacteria during a dust event in Beijing[J]. Journal of Environmental Sciences, 2017, 55: 33-40.DOI: 10.1016/j.jes.2016.03.033. |
[29] | Harrison R M, Jones A M, Biggins P D, et al. Climate factors influencing bacterial count in background air samples[J]. International Journal of Biometeorology, 2005, 49(3): 167-178. |
[30] | Maki T, Puspitasari F, Hara K, et al. Variations in the structure of airborne bacterial communities in a downwind area during an Asian dust (Kosa) event[J]. Science of the Total Environment, 2014, (488/489): 75-84.DOI: 10.1016/j.scitotenv.2014.04.044. |
[31] | Chen P S, Li C S.Bioaerosol characterization by flow cytometry with fluorochrome[J]. Journal of Environmental Monitoring, 2005, 7(10): 950-959. |
[32] | Griffin D W.Atmospheric movement of microorganisms in clouds of desert dust and implications for human health[J]. Clinical Microbiology Reviews, 2007, 20(3): 459-477. |
[33] | Liang L, Engling G, Cheng Y,et al. Rapid detection and quantification of fungal spores in the urban atmosphere by flow cytometry[J]. Journal of Aerosol Science, 2013, 66: 179-186. DOI: 10.1016/j.jaerosci.2013.08.013. |
[34] | Ou F, McGoverin C, Swift S,et al. Absolute bacterial cell enumeration using flow cytometry[J]. Journal of applied microbiology, 2017, 123: 464-477. DOI: 10.1111/jam.13508. |
[35] | Smith C J, Osborn A M.Advantages and limitations of quantitative PCR (Q-PCR)—Based approaches in microbial ecology[J]. FEMS Microbiology Ecology, 2009, 67(1): 6-20. |
[36] | Li K, Dong S, Wu Y, et al. Comparison of the biological content of air samples collected at ground level and at higher elevation[J]. Aerobiologia, 2010, 26(3): 233-244. |
[37] | Choi D H, Noh J H.Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea[J]. FEMS Microbiology Ecology, 2009, 69(3): 439-448. |
[38] | Yoo K, Lee T K, Choi E J, et al. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review[J]. Journal of Environmental Sciences, 2017, 51: 234-247. DOI: 10.1016/j.jes.2016.07.002. |
[39] | Parameswaran P, Zhang H, Torres C I, et al. Microbial community structure in a biofilm anode fed with a fermentable substrate: The significance of hydrogen scavengers[J]. Biotechnology and Bioengineering, 2010, 105(1): 69-78. |
[40] | Bragg L, Stone G, Imelfort M, et al. Fast, accurate error-correction of amplicon pyrosequences using Acacia[J]. Nature Methods, 2012, 9(5): 425-426. |
[41] | Degnan P H, Ochman H.Illumina-based analysis of microbial community diversity[J]. The International Society for Microbial Ecology Journal, 2011, 6(1): 183-194. |
[42] | Zhou H W, Li D F, Tam N F, et al. BIPES, a cost-effective high-throughput method for assessing microbial diversity[J]. The International Society for Microbial Ecology Journal, 2011, 5(4): 741-749. |
[43] | Griffin D W, Westphal D L, Gray M A.Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209[J]. Aerobiologia, 2006, 22(3): 211-226. |
[44] | Cho B C, Hwang C Y.Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea)[J]. FEMS Microbiology Ecology, 2011, 76(2): 327-341. |
[45] | Kellogg C A, Griffin D W.Aerobiology and the global transport of desert dust[J]. Trends in Ecology and Evolution, 2006, 21(11): 638-644. |
[46] | Polymenakou P N, Mandalakis M, Stephanou E G, et al. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean[J]. Environmental Health Perspectives, 2007, 116(3): 292-296. |
[47] | Stramski D, Boss E, Bogucki D,et al. The role of seawater constituents in light backscattering in the ocean[J]. Progress in Oceanography, 2004, 61(1): 27-56. |
[48] | Facchini M C, Rinaldi M, Decesari S, et al. Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates[J]. Geophysical Research Letters, 2008, 35(17): L17814. DOI: 10.1029/2008GL034210. |
[49] | O'Dowd C D, Langmann B, Varghese S, et al. A combined organic-inorganic sea-spray source function[J]. Geophysical Research Letters, 2008, 35(1): L01801. DOI: 10.1029/2007GL030331. |
[50] | Ceburnis D, O'Dowd C D, Jennings G S, et al. Marine aerosol chemistry gradients: Elucidating primary and secondary processes and fluxes[J]. Geophysical Research Letters, 2008, 35(7): L07804. DOI: 10.1029 /2008GL033462. |
[51] | O'Dowd C D, de Leeuw G. Marine aerosol production: A review of the current knowledge[J]. Philosophical Transactions of the Royal Society A—Mathematical Physical and Engineering Sciences, 2007, 365(1 856): 1 753-1774. |
[52] | Tong Y, Lighthart B.The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon[J]. Aerosol Science and Technology, 2000, 32(5): 393-403. |
[53] | Wang C C, Fang G C, Lee L Y.The study of ambient air bioaerosols during summer daytime and nighttime periods in Taichung, Central Taiwan[J].Environmental Forensics, 2008, 9(1): 6-14. |
[54] | Lu Longfei, Zhang Rui, Xu Jie, et al. Influence of virus upon the marine bacterial metabolism and its biogeochemical effects[J]. Advances in Earth Science, 2018, 33(3): 225-235. |
[54] | [卢龙飞, 张锐, 徐杰, 等. 病毒对海洋细菌代谢的影响及其生物地球化学效应[J]. 地球科学进展,2018,33(3): 225-235.] |
[55] | Fahlgren C, Hagstrom A, Nilsson D,et al. Annual variations in the diversity, viability, and origin of airborne bacteria[J]. Applied and Environmental Microbiology, 2010, 76(9): 3 015-3 025. |
[56] | Xu C, Wei M, Chen J,et al. Investigation of diverse bacteria in cloud water at Mt. Tai, China[J]. Science of the Total Environment, 2017, 580: 258-265. DOI: 10.1016/j.scitotenv.2016.12.081. |
[57] | Innocente E, Squizzato S, Visin F, et al. Influence of seasonality. Influence of seasonality, air mass origin and particulate matter chemical composition on airborne bacterial community structure in the Po Valley, Italy[J]. Science of the Total Environment, 2017, 593/594: 677-687. DOI: 10.1016/j.scitotenv.2017.03.199. |
[58] | Kwak M J, Song J Y, Kim B K, et al. Genome sequence of the agar-degrading marine bacterium Alteromonadaceae sp. strain G7[J]. Journal of Bacteriology, 2012, 194(24): 6 961-6 962. |
[59] | Kourtev P S, Hill K A, Shepson P B, et al. Atmospheric cloud water contains a diverse bacterial community[J]. Atmospheric Environment, 2011, 45(30): 5 399-5 405. |
[60] | Latifi A, Ruiz M, Zhang C C.Oxidative stress in cyanobacteria[J]. FEMS Microbiology Reviews, 2009, 33(2): 258-278. |
[61] | Gao Huiwang, Yao Xiaohong, Guo Zhigang, et al. Atmospheric deposition connected with marine primary production and nitrogen cycle: A review[J]. Advances in Earth Science, 2014, 29(12): 1 325-1 332. |
[61] | [高会旺, 姚小红, 郭志刚,等.大气沉降对海洋初级生产过程与氮循环的影响研究进展[J]. 地球科学进展, 2014, 29(12): 1 325-1 332.] |
[62] | Chen Ying, Zhuang Guoshun, Guo Zhigang.Atmospheric desposition of nutrients and trace elements to the coastal oceans: A review[J]. Advances in Earth Science, 2010, 25(7): 682-690. |
[62] | [陈莹, 庄国顺, 郭志刚. 近海营养盐和微量元素的大气沉降[J]. 地球科学进展, 2010,25(7): 682-690.] |
[63] | Liu Qingchun, Qian Huaisui.International geosphere biosphere program: Progress and prospect[J]. Meteorological Technology and Science, 2005, 33(1):91-95. |
[63] | [刘清春, 千怀遂. 国际地圈—生物圈计划研究进展和展望[J]. 气象科技, 2005, 33(1): 91-95.] |
[64] | Sorooshian A, MacDonald A B, Dadashazar H, et al. A multi-year data set on aerosol-cloud-precipitation-meteorology interactions for marine stratocumulus clouds[J]. Scientific Data, 2018, 5: 180026. DOI: 10.1038/sdata.2018.26. |
[65] | Brodie E L, DeSantis T Z, Parker J P, et al. Urban aerosols harbor diverse and dynamic bacterial populations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 299-304. |
[66] | Amato P, Parazols M, Sancelme M, et al. An important oceanic source of micro-organisms for cloud water at the Puy de D?me (France)[J]. Atmospheric Environment, 2007, 41(37): 8 253-8 263. |
[67] | Spracklen D V, Arnold S R, Sciare J, et al. Globally significant oceanic source of organic carbon aerosol[J]. Geophysical Research Letters, 2008, 35(12): L12811. DOI: 10.1029/2008GL033359. |
[68] | O'dowd C D, Facchini M C, Cavalli F, et al. Biogenically driven organic contribution to marine aerosol[J]. Nature, 2004, 431(7 009): 676. |
[69] | Meskhidze N, Nenes A.Phytoplankton and cloudiness in the Southern Ocean[J]. Science, 2006, 314(5 804): 1 419-1 423. |
[70] | Vaitilingom M, Amato P, Sancelme M, et al. Contribution of microbial activity to carbon chemistry in clouds[J]. Applied and Environmental Microbiology, 2010, 76(1): 23-29. |
[71] | Kawahara H.The structures and functions of ice crystal-controlling proteins from bacteria[J]. Journal of Bioscience and Bioengineering, 2002, 94(6): 492-496. |
[72] | Gandolfi I, Bertolini V, Bestetti G,et al. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas[J]. Applied Microbiology and Biotechnology, 2015, 99(11): 4 867-4 877. |
[73] | Mbareche H, Brisebois E, Veillette M,et al. Bioaerosol sampling and detection methods based on molecular approaches: No pain no gain[J]. Science of the Total Environment, 2017, (599/600): 2 095-2 104. DOI: 10.1016/j.scitotenv.2017.05.076. |
/
〈 |
|
〉 |