综述与评述

病毒对海洋细菌代谢的影响及其生物地球化学效应

  • 卢龙飞 ,
  • 张锐 ,
  • 徐杰 ,
  • 焦念志
展开
  • 1.厦门大学海洋与地球学院, 近海海洋环境科学国家重点实验室, 海洋微型生物与地球圈层研究所, 福建 厦门 361102
    2.中国科学院南海海洋研究所, 广东 广州 510301

作者简介:卢龙飞(1987-),男,山东荣成人,博士研究生,主要从事海洋病毒生态学研究.E-mail:lulongfei567@163.com

*通信作者:焦念志(1962-),男,山东潍坊人,教授,主要从事海洋微型生物生态学和海洋碳循环研究.E-mail:jiao@xmu.edu.cn

收稿日期: 2017-11-13

  修回日期: 2018-02-01

  网络出版日期: 2018-05-02

基金资助

*国家自然科学基金优秀青年科学基金项目“海洋病毒生态学”(编号:41522603);国家自然科学基金面上项目“溶源性噬菌体对海洋细菌生理生态特性的影响”(编号:31570172)资助.

版权

, 2018,

Influence of Virus upon the Marine Bacterial Metabolism and Its Biogeochemical Effects

  • Longfei Lu ,
  • Rui Zhang ,
  • Jie Xu ,
  • Nianzhi Jiao
Expand
  • 1.Institute of Marine Microbes and Ecospheres, State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China;
    2.South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China

First author:Lu Longfei(1987-), male, Rongcheng City, Shandong Province, Ph.D student. Research areas include marine viral ecology.E-mail:lulongfei567@163.com

*Corresponding author:Jiao Nianzhi(1962-), male, Weifang City, Shandong Province, Professor. Research areas include marine microbial ecology and marine carbon cycle.E-mail:jiao@xmu.edu.cn

Received date: 2017-11-13

  Revised date: 2018-02-01

  Online published: 2018-05-02

Supported by

Project supported by the National Natural Science Foundation of China “Marine viral ecology” (No.41522603) and “Effects of lysogenic phage on ecophysiological characteristics of marine bacteria” (No.31570172).

Copyright

地球科学进展 编辑部, 2018,

摘要

病毒是海洋生态系统中丰度最高的生命形式,其中超过90%属于浮游细菌(细菌和古菌)病毒,是海洋生态系统的重要参与者和海洋生物地球化学循环的重要驱动力。作为海洋浮游细菌主要的致死因子之一,病毒通过裂解宿主释放出大量的有机物和营养盐,调控宿主群落的代谢行为,进而影响生物地球化学循环。同时,伴随侵染的发生,病毒挟持宿主细胞的代谢系统完成自身的生命周期,从而改变宿主胞内的代谢途径和代谢产物。概述了病毒在个体层面和群落层面对海洋浮游细菌代谢的影响,及其对海洋元素循环的作用,评估了气候变化、环境因子对病毒调控细菌代谢的潜在影响,有助于人们对微生物参与的海洋生物地球化学循环的全面认识。

本文引用格式

卢龙飞 , 张锐 , 徐杰 , 焦念志 . 病毒对海洋细菌代谢的影响及其生物地球化学效应[J]. 地球科学进展, 2018 , 33(3) : 225 -235 . DOI: 10.11867/j.issn.1001-8166.2018.03.0225

Abstract

Viruses are by far the most abundant entities in marine environments, and are mainly phages that infect bacteria and archaea, which also are a significant component of marine ecosystem and a major force behind marine biogeochemical cycles. As a major source of mortality, viral lysis can release highly labile cellular components, both organic matters and inorganic nutrients, regulating the metabolism of its hosts and influencing the biogeochemical cycles. During infection, viruses could hijack the metabolic system of hosts for its own propagation, thereby changing the metabolism and metabolites of host cells. This paper summarized the effects of viruses on the metabolism of marine bacterioplankton at both the cellular and community level, and its influence on the cycling of ocean elements. Then, the potential impact of environmental factors was assessed on the influence of viruses upon bacterial metabolism. This paper will contribute to a comprehensive understanding of the role of microbes within marine biogeochemical cycles.

参考文献

[1] Suttle C A.Viruses in the sea[J]. Nature, 2005, 437(7 057): 356.
[2] Suttle C A.Marine viruses—Major players in the global ecosystem[J]. Nature Reviews Microbiology, 2007, 5(10): 801-812.
[3] Jiao Nianzhi.Marine Microbial Ecology[M]. Beijing: Science Press, 2006.
[3] [焦念志. 海洋微型生物生态学[M]. 北京: 科学出版社, 2006.]
[4] Wommack K E, Colwell R R.Virioplankton: Viruses in aquatic ecosystems[J]. Microbiology and Molecular Biology Reviews, 2000, 64(1): 69-114.
[5] Fuhrman J A, Suttle C A.Viruses in marine planktonic systems[J]. Oceanography, 1993, 6(2): 51-63.
[6] Brussaard C P D, Wilhelm S W, Thingstad F, et al. Global-scale processes with a nanoscale drive: The role of marine viruses[J]. ISME Journal, 2008, 2(6): 575-578.
[7] Azam F, Fenchel T, Field J G, et al. The ecological role of water-column microbes in the sea[J]. Marine Ecology Progress Series, 1983, 10: 257-263.
[8] Azam F.Microbial control of oceanic carbon flux: The plot thickens[J]. Science, 1998, 280(5 364): 694-696.
[9] Ren Chengzhe, Yuan Huamao, Song Jinming, et al. Amino sugars and their indicating role in the cycling of organic matter in marine environment[J]. Advances in Earth Science, 2017, 32(9): 959-971.
[9] [任成喆, 袁华茂, 宋金明, 等. 海洋环境中的氨基糖及其在有机质循环过程中的指示作用[J]. 地球科学进展, 2017, 32(9): 959-971.]
[10] Smith E M, Prairie Y T.Bacterial metabolism and growth efficiency in lakes: The importance of phosphorus availability[J]. Limnology and Oceanography, 2004, 49(1): 137-147.
[11] Kritzberg E S, Cole J J, Pace M M, et al. Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial inputs[J]. Aquatic Microbial Ecology, 2005, 38(2): 103-111.
[12] Maurice C F, Bouvier T, Comte J, et al. Seasonal variations of phage life strategies and bacterial physiological states in three northern temperate lakes[J]. Environmental Microbiology, 2010, 12(3): 628-641.
[13] Cole J J, Findlay S, Pace M L.Bacterial production in fresh and saltwater ecosystems: A cross-system overview[J]. Marine Ecology Progress Series, 1988, 43: 1-10.
[14] Ducklow H W, Carlson C A.Oceanic bacterial production[M]∥Marshall K C, ed. Advances in Microbial Ecology. Boston, MA: Springer, 1992: 113-181.
[15] del Giorgio P A, Cole J J. Bacterial growth efficiency in natural aquatic ecosystems[J]. Annual Review of Ecology and Systematics, 1998, 29: 503-541.
[16] Biddanda B, Ogdahl M, Cotner J.Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters[J]. Limnology and Oceanography, 2001, 46(3): 730-739.
[17] Carlson C A, Giorgio P D, Herndl G J.Microbes and the dissipation of energy and respiration: From cells to ecosystems[J]. Oceanography, 2007, 20(2): 89-100.
[18] Kirchman D L.Processes in Microbial Ecology[M]. Oxford: Oxford University Press, 2012.
[19] Hansell D A, Carlson C A.Biogeochemistry of Marine Dissolved Organic Matter Second edition[M]. London: Academic Press, 2014.
[20] Mann N, Cook A, Millard A, et al. Marine ecosystems: Bacterial photosynthesis genes in a virus[J]. Nature, 2003, 424(6 950): 741.
[21] Sharon I, Battchikova N, Aro E, et al. Comparative metagenomics of microbial traits within oceanic viral communities[J]. ISME Journal, 2011, 5(7): 1 178-1 190.
[22] Thompson L, Zeng Q, Kelly L, et al. Phage auxiliary metabolic genes and the redirection of cyanobacterial host carbon metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(39): E757-E764.
[23] Anantharaman K, Duhaime M, Breier J, et al. Sulfur oxidation genes in diverse deep-sea viruses[J]. Science, 2014, 344(6 185): 757-760.
[24] Hagay E, Mandel-Gutfreund Y, Béj O.Comparative metagenomics analyses reveal viral-induced shifts of host metabolism towards nucleotide bio-sysnthesis[J]. Microbiome, 2014, 2(1): 9.
[25] Jover L F, Effler T C, Buchan A, et al. The elemental composition of virus particles: Implications for marine biogeochemical cycles[J]. Nature Reviews Microbiology, 2014, 12(7): 519-528.
[26] Zhang R, Wei W, Cai L.The fate and biogeochemical cycling of viral elements[J]. Nature Reviews Microbiology, 2014, 12: 850-851.DOI:10.1038/nrmicro3384.
[27] Middelboe M.Bacterial growth rate and marine virus-host dynamics[J]. Microbial Ecology, 2000, 40(2): 114-124.
[28] Philosof A, Battchikova N, Aro E, et al. Marine cyanophages: Tinkering with the electron transport chain[J]. ISME Journal, 2011, 5(10): 1 568-1 570.
[29] Dwivedi B, Xue B, Lundin D, et al. A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes[J]. BMC Evolutionary Biology, 2013, 13: 33.
[30] Zeng Q, Chisholm S W.Marine viruses exploit their host’s two-component regulatory system in response to resource limitation[J]. Current Biology, 2012, 22(2): 124-128.
[31] Williamson S, Rusch D, Yooseph S, ,et al. The sorcerer II global ocean sampling expedition: Metagenomic characterization of viruses within aquatic microbial samples[J]. PloS ONE. The sorcerer II global ocean sampling expedition: Metagenomic characterization of viruses within aquatic microbial samples[J]. PloS ONE, 2008, 3(1): e1 456.
[32] Crummett L T, Puxty R J, Weihe C, et al. The genomic content and context of auxiliary metabolic genes in marine cyanomyoviruses[J]. Virology, 2016, 499: 219-229.
[33] Lindell D, Jaffe J D, Johnson Z I, et al. Photosynthesis genes in marine viruses yield proteins during host infection[J]. Nature, 2005, 438(7 064): 86-89.
[34] Sharon I, Tzahor S, Williamson S, et al. Viral photosynthetic reaction center genes and transcripts in the marine environment[J]. ISME Journal, 2007, 1(6): 492-501.
[35] Mann N H, Clokie M R J, Millard A, et al. The genome of S-PM2, a ‘photosynthetic’ T4-type bacteriophage that infects marine Synechococcus[J]. Journal of Bacteriology, 2005, 187(9): 3 188-3 200.
[36] Ankrah N Y D, May A L, Middleton J L, et al. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition[J]. ISME Journal, 2014, 8(5): 1 089-1 100.
[37] De Smet J, Zimmermann M, Kogadeeva M, et al. High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection[J]. ISME Journal, 2016, 10(8): 1 823-1 835.
[38] Azam F, Malfatti F.Microbial structuring of marine ecosystems[J]. Nature Reviews Microbiology, 2007, 5(10): 782-791.
[39] Fuhrman J A.Marine viruses and their biogeochemical and ecological effects[J]. Nature, 1999, 399(6 736): 541-548.
[40] Weitz J S, Stock C A, Wilhelm S W, et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes[J]. ISME Journal, 2015, 9(6): 1 352-1 364.
[41] Bonilla-Findji O, Malits A, Lefèvre D, et al. Viral effects on bacterial respiration, production and growth efficiency: Consistent trends in the Southern Ocean and the Mediterranean Sea[J]. Deep-Sea Research Part II:Topical Studies in Oceanography, 2008, 55(5): 790-800.
[42] Motegi C, Nagata T, Miki T, et al. Viral control of bacterial growth efficiency in marine pelagic environments[J]. Limnology and Oceanography, 2009, 54(6): 1 901-1 910.
[43] Xu J, Jing H, Sun M, et al. Regulation of bacterial metabolic activity by dissolved organic carbon and viruses[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(4): 1 573-1 583.
[44] Middelboe M, J?rgensen N O G, Kroer N. Effects of viruses on nutrient turnover and growth efficiency of noninfected marine bacterioplankton[J]. Applied and Environmental Microbiology, 1996, 62(6): 1 991-1 997.
[45] Liu H, Yuan X, Xu J, et al. Effects of viruses on bacterial functions under contrasting nutritional conditions for four species of bacteria isolated from Hong Kong waters[J]. Scientific Reports, 2015, 5: 14 217.
[46] Noble R T, Middelboe M, Fuhrman J A.The effects of viral enrichment on the mortality and growth of heterotrophic bacterioplankton[J]. Aquatic Microbial Ecology, 1999, 18(1): 1-13.
[47] Middelboe M, Lyck P G.Regeneration of dissolved organic matter by viral lysis in marine microbial communities[J]. Aquatic Microbial Ecology, 2002, 27(2): 187-194.
[48] Eissler Y, Qui?ones R A.The effect of viral concentrate addition on the respiration rate of Chaetoceros gracilis cultures and microplankton from a shallow bay (Coliumo, Chile)[J]. Journal of Plankton Research, 2003, 25(8): 927-938.
[49] Malits A, Weinbauer M G.Effect of turbulence and viruses on prokaryotic cell size, production and diversity[J]. Aquatic Microbial Ecology, 2009, 54(3): 243-254.
[50] Xu J, Sun M, Shi Z, et al. Response of bacterial metabolic activity to riverine dissolved organic carbon and exogenous viruses in estuarine and coastal waters: Implications for CO2 emission[J]. PloS ONE, 2014, 9(7): e102490.
[51] Bratbak G, Heldal M, Norland S, et al. Viruses as partners in spring bloom microbial trophodynamics[J]. Applied and Environmental Microbiology, 1990, 56(5): 1 400-1 405.
[52] Pradeep Ram A S, Colombet J, Perriere F, et al. Viral and grazer regulation of prokaryotic growth efficiency in temperate freshwater pelagic environments[J]. FEMS Microbial Ecology, 2015, 91(2): 1-12.
[53] Pradeep Ram A S P, Colombet J, Perriere F, et al. Viral regulation of prokaryotic carbon metabolism in a hypereutrophic freshwater reservoir ecosystem (Villerest, France)[J]. Frontiers in Microbiology, 2016, 7: 81.
[54] Pradeep Ram A S, Palesse S, Colombet J, et al. Variable viral and grazer control of prokaryotic growth efficiency in temperate freshwater lakes (French Massif Central)[J]. Microbial Ecology, 2013, 66(4): 906-916.
[55] Wilhelm S W, Suttle C A.Viruses and nutrient cycles in the sea[J]. Bioscience, 1999, 49(10): 781-788.
[56] Weinbauer M G.Ecology of prokaryotic viruses[J]. FEMS Microbiology Reviews, 2004, 28(2): 127-181.
[57] Hansell D A.Recalcitrant dissolved organic carbon fractions[J]. Annual Review of Ecology and Systematics, 2013, 5: 421-445.
[58] Hansell D A, Carlson C A, Repeta D J, et al. Dissolved organic matter in the ocean: New insights stimulated by a controversy[J]. Oceanography, 2009, 22(4): 52-61.
[59] Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305(5 682): 367-371.
[60] Volk T, Hoffert M I.Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[M]∥Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO: Natural Variations Archean to Present. American Geophysical Union,1985.DOI:10.1029/GM032.
[61] Passow U, Carlson C A.The biological pump in a high CO2 world[J]. Marine Ecology Progress Series, 2012, 470: 249-271.
[62] Jiao N, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8(8): 593-599.
[63] Jiao Nianzhi, Li Chao, Wang Xiaoxue.Response and feedback of marine carbon sink to climate change[J]. Advances in Earth Science, 2016, 31(7): 668-681.
[63] [焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.]
[64] Weinbauer M G, Rassoulzadegan F.Are viruses driving microbial diversification and diversity?[J]. Environmental Microbiology, 2004, 6(1): 1-11.
[65] Rivkin R B, Legendre L.Biogenic carbon cycling in the upper ocean: Effects of microbial respiration[J]. Science, 2001, 291(5 512): 2 398-2 400.
[66] Shelford E J, Middelboe M, M?ller E F, et al. Virus-driven nitrogen cycling enhances phytoplankton growth[J]. Aquatic Microbial Ecology, 2012, 66(1): 41-46.
[67] Middelboe M, J?rgensen N O G. Viral lysis of bacteria: An important source of dissolved amino acids and cell wall compounds[J]. Journal of the Marine Biological Association of the United Kingdom, 2006, 86(3): 605-612.
[68] Goldman J C, Caron D A, Dennett M R.Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C: N ratio[J]. Limnology and Oceanography, 1987, 32(6): 1 239-1 252.
[69] Poorvin L, Rinta-Kanto J M, Hutchins D A, et al. Viral release of iron and its bioavailability to marine plankton[J]. Limnology and Oceanography, 2004, 49(5): 1 734-1 741.
[70] Mioni C E, Poorvin L, Wilhelm S W.Virus and siderophore-mediated transfer of available Fe between heterotrophic bacteria: Characterization using an Fe-specific bioreporter[J]. Aquatic Microbial Ecology, 2005, 41(3): 233-245.
[71] Tomaru Y, Tanabe H, Yamanaka S, et al. Effects of temperature and light on stability of microalgal viruses, HaV, HcV, and HcRNAV[J]. Plankton Biology and Ecology, 2005, 52(1): 1-6.
[72] Matteson A R, Loar S N, Pickmere S, et al. Production of viruses during a spring phytoplankton bloom in the South Pacific Ocean near of New Zealand[J]. FEMS Microbiology Ecology, 2012, 79(3): 709-719.
[73] Paul J H.Prophages in marine bacteria: Dangerous molecular time bombs or the key to survival in the seas?[J]. ISME Journal, 2008, 2(6): 579-589.
[74] Delisle A L, Levin R E.Characteristics of three phages infectious for psychrophilic fishery isolates of Pseudomonas putrefaciens[J]. Antonie Van Leeuwenhoek, 1972, 38(1): 1-8.
[75] Mojica K D A, Brussaard C P D. Factors affecting virus dynamics and microbial host-virus interactions in marine environments[J]. FEMS Microbiology Ecology, 2014, 89(3): 495-515.
[76] White P A, Kalff J, Rasmussen J B, et al. The effect of temperature and algal biomass on bacterial production and specific growth-rate in fresh-water and marine habitats[J]. Microbial Ecology, 1991, 21(1): 99-118.
[77] Wiebe W J, Sheldon W M, Pomeroy L R.Bacterial-growth in the cold-evidence for an enhanced substrate requirement[J]. Applied and Environmental Microbiology, 1992, 58(1): 359-364.
[78] Suttle C A, Chen F.Mechanisms and rates of decay of marine viruses in seawater[J]. Applied and Environmental Microbiology, 1992, 58(11): 3 721-3 729.
[79] Weinbauer M G, Suttle C A.Lysogeny and prophage induction in coastal and offshore bacterial communities[J]. Aquatic Microbial Ecology, 1999, 18(3): 217-225.
[80] Kellogg C A, Paul J H.Degree of ultraviolet radiation damage and repair capabilities are related to G+C content in marine vibriophages[J]. Aquatic Microbial Ecology, 2002, 27(1): 13-20.
[81] Traving S J, Clokie M R J, Middelboe M. Increased acidification has profound effect on the interactions between the cyanobacterium Synechococcus sp. WH7803 and its viruses[J]. FEMS Microbiology Ecology, 2014, 87(1): 133-141.
[82] Jacquet S, Heldal M, Iglesias-Rodriguez D, et al. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection[J]. Aquatic Microbial Ecology, 2002, 27(2): 111-124.
[83] Clokie M R J, Mann N H. Marine cyanophages and light[J]. Environmental Microbiology, 2006, 8(12): 2 074-2 082.
[84] Wilhelm S W, Jeffrey W H, Dean A L, et al. UV radiation induced DNA damage in marine viruses along a latitudinal gradient in the southeastern Pacific Ocean[J]. Aquatic Microbial Ecology, 2003, 31(1): 1-8.
[85] Furuta M, Schrader J O, Schrader H S, et al. Chlorella virus PBCV-1 encodes a homolog of the bacteriophage T4 UV damage repair gene denV[J]. Applied and Environmental Microbiology, 1997, 63(4): 1 551-1 556.
[86] Orgata H, Ray J, Toyoda K, et al. Two new subfamilies of DNA mismatch repair proteins (MutS) specifically abundant in the marine environment[J]. ISME Journal, 2011, 5(7): 1 143-1 151.
[87] Santini S, Jeudy S, Bartoli J, et al. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(26): 10 800-10 805.
[88] Cordova A, Deserno M, Gelbart W M, et al. Osmotic shock and the strength of viral capsids[J]. Biophysical Journal, 2003, 85(1): 70-74.
[89] Kukkaro P, Bamford D H.Virus-host interactions in environments with a wide range of ionic strengths[J]. Environmental Microbiology Reports, 2009, 1(1): 71-77.
[90] Zachary A.Physiology and ecology of bacteriophages of the marine bacterium Beneckea natriegens: Salinity[J]. Applied and Environmental Microbiology, 1976, 31(3): 415-422.
[91] Williamson S J, Paul J H.Environmental factors that influence the transition from lysogenic to lytic existence in the ?HSIC/Listonella pelagia marine phage-host system[J]. Microbial Ecology, 2006, 52(2): 217-225.
[92] Wilson W H, Carr N G, Mann N H.The effect of phosphate status on the kinetics of cyanophage infection in the oceanic cyanobacterium Synechococcus sp. WH7803[J]. Journal of Phycology, 1996, 32(4): 506-516.
[93] Wilson W H, Turner S, Mann N H.Population dynamics of phytoplankton and viruses in a phosphate-limited mesocosm and their effect on DMSP and DMS production[J]. Estuarine Coastal and Shelf Science, 1998, 46(2): 49-59.
[94] Abedon S T, Herschler T D, Stopar D.Bacteriophage latent period evolution as a response to resource availability[J]. Applied and Environmental Microbiology, 2001, 67(9): 4 233-4 241.
[95] Apple J K, del Giorgio P A. Organic substrate quality as the link between bacterioplankton carbon demand and growth efficiency in a temperate salt-marsh estuary[J]. ISME Journal, 2007, 1(8): 729-742.
[96] Noble R T, Fuhrman J A.Virus decay and its causes in coastal waters[J]. Applied and Environmental Microbiology, 1997, 63(1): 77-83.
[97] Motegi C, Nagata T.Enhancement of viral production by addition of nitrogen or nitrogen plus carbon in subtropical surface waters of the South Pacific[J]. Aquatic Microbial Ecology, 2007, 48(1): 27-34.
[98] Rochelle-Newall E, Delille B, Frankignoulle M, et al. Chromophoric dissolved organic matter in experimental mesocosms maintained under different pCO2 levels[J]. Marine Ecology Progress Series, 2004, 272: 25-31.
[99] Carreira C, Heldal M, Bratbak G.Effect of increased pCO2 on phytoplankton-virus interactions[J]. Biogeochemistry, 2012, 114(1/3): 391-397.
[100] Maat D S, Crawfurd K J, Timmermans K R, et al. Elevated CO2 and phosphate limitation favor Micromonas pusilla through stimulated growth and reduced viral impact[J]. Applied and Environmental Microbiology, 2014, 80(22): 3 119-3 127.
[101] Larsen J B, Larsen A, Thyrhaug R, et al. Response of marine viral populations to a nutrient induced phytoplankton bloom at different pCO2 level[J]. Biogeosciences, 2008, 5(2): 523-533.
[102] Yang Yunlan, Cai Lanlan, Zhang Rui.Effects of global climate change on the ecological characteristics and biogeochemical significance of marine viruses—A review[J]. Acta Microbiologica Sinica, 2015, 55(9): 1 097-1 104.
[102] [杨芸兰, 蔡兰兰, 张锐. 气候变化对海洋病毒生态特性及其生物地球化学效应的影响[J]. 微生物学报, 2015, 55(9): 1 097-1 104.]
文章导航

/