作者简介:王风平(1971-),女,湖北丹江口人,教授,主要从事深部生物圈研究.E-mail:fengpingw@stju.edu.cn
收稿日期: 2017-10-16
修回日期: 2017-11-28
网络出版日期: 2018-03-06
基金资助
*国家自然科学基金项目“深部生物圈生物地球化学功能研究”(编号:41525011);国家自然科学基金委员会与以色列科学基金会合作研究项目“海洋沉积物深层(产甲烷带)微生介导的铁还原作用研究”(编号:31661143022)资助.
版权
Progress and Prospect in Deep Biosphere Investigation
First author:Wang Fengping(1971-),female,Danjiangkou City,Hubei Province,Professor. Research areas include deep biosphere.E-mail:fengpingw@sjtu.edu.cn
Received date: 2017-10-16
Revised date: 2017-11-28
Online published: 2018-03-06
Supported by
Project supported by the National Natural Science Foundation of China “Study on the geochemical function of subsurface microorganisms” (No.41525011) and “Microbe-mediated iron reduction in the deep sediment (methanogenic zone) ” ( No.31661143022).
Copyright
发现海底沉积物深处乃至岩石中仍然有生命,是“大洋钻探计划”开展近半个世纪以来最令人激动的重要发现之一,即大洋“深部生物圈”的发现。近年来,深部生物圈的发现与探索已成为地质学和生物学领域最令人兴奋的研究前沿之一,生物圈前沿即深部生命、生物多样性和环境驱动的生态系统成为新的国际大洋发现计划(IODP 2013-2023)的四大研究主题之一。通过对深部生物圈研究历史进行简单回顾,介绍深部生物圈及其环境特征,目前已经完成的以探究地壳和海洋沉积物中生物圈为目标的大洋钻探计划(IODP)航次,深部生物圈研究的前沿科学问题,已经取得的重大研究进展和面临的挑战,以及中国科学家的贡献和深部生物圈的未来发展的建议与展望。
王风平 , 陈云如 . 深部生物圈研究进展与展望[J]. 地球科学进展, 2017 , 32(12) : 1277 -1286 . DOI: 10.11867/j.issn.1001-8166.2017.12.1277
The discovery of living microorganisms deep in the marine sediments and even in the oceanic crust (the marine “deep biosphere”), is one of the most significant and exciting discoveries since the ocean drilling program began almost a half-century ago. Investigation of the deep biosphere has become the most thrilling research frontier for both geological and biological sciences. The “biosphere frontiers” has been listed as one of the four themes in the 10-year plan of the International Ocean Discovery Program (IODP 2012-2023), including deep life, biodiversity and environmental forcing of ecosystems. Here, we introduced the deep biosphere and its environmental features, several completed Integrated Ocean Drilling Program Expeditions, which targeted the subseafloor deep biosphere within the crust and sediments, and highlighted the main progress we have made in deep biosphere and deep life research, especially the contribution of Chinese scientists. Finally, we will give a perspective on the future of deep biosphere research according to the challenge we are facing and the key questions need to be answered.
Key words: Deep biosphere; Ocean drilling; Dark energy; Limits of life.
[1] | J?rgensen B B, Boetius A.Feast and famine—Microbial life in the deep-sea bed[J]. Nature Reviews Microbiology, 2007, 5(10): 770-781. |
[2] | ZoBell C E, Anderson Q A. Vertical distribution of bacteria in marine sediments[J]. American Association of Petroleum Geologists Bulletin, 1936, 20(3): 258-269. |
[3] | ZoBell C E, Morita R Y. Barophilic bacteria in some deep sea sediments[J]. Journal of Bacteriology, 1957, 73(4): 563-568. |
[4] | ZoBell C E. Studies on the bacterial flora of marine bottom sediments[J]. Journal of Sedimentary Research, 1938, 8(1):10-18. |
[5] | Corliss J B, Dymond J, Gordon L I, et al. Submarine thermal springs on the Galapagos rift[J]. Science, 1979, 203: 1 073-1 083. |
[6] | Parkes R J, Cragg B A, Bale S J, et al. Deep bacterial biosphere in Pacific Ocean sediments[J]. Nature, 1994, 371(6 496): 410-413. |
[7] | Wang Fengping, Lu Shulin, Orcutt B N, et al. Discovering the roles of subsurface microorganisms: Progress and future of deep biosphere investigation[J]. Chinese Science Bulletin, 2013,58(4/5): 456-467. |
[8] | Schrenk M O, Huber J A, Edwards K J.Microbial provinces in the subseafloor[J]. Annaual Review of Marine Science,2010,2:279-304. |
[9] | Johnson H P, Pruis M J.Fluxes of fluid and heat from the oceanic crustal reservoir[J]. Annual Review of Marine Science, 2003, 216(4):565-574. |
[10] | Fry J C, Parkes R J, Cragg B A, et al. Prokaryotic biodiversity and activity in the deep subseafloor biosphere[J]. FEMS Microbiology Ecology, 2008, 66(2): 181-196. |
[11] | Orcutt B N, Sylvan J B, Knab N J, et al. Microbial ecology of the dark ocean above, at, and below the seafloor[J]. Microbiology and Molecular Biology Reviews, 2011, 75(2): 361-422. |
[12] | Whitman W B, Coleman D C, Wiebe W J.Prokaryotes: The unseen majority[J]. Proceedings of the National Academy of Sciences, 1998, 95(12): 6 578-6 583. |
[13] | Pollack H N, Hurter S J, Johnson J R.Heat flow from the Earth’s interior: Analysis of the global data set[J]. Reviews of Geophysics, 1993, 31(3): 267-280. |
[14] | Detrick R S.Seafloor spreading: Portrait of a magma chamber[J]. Nature, 2000, 406(6 796): 578-580. |
[15] | Fisher A T.Marine hydrogeology: Recent accomplishments and future opportunities[J]. Hydrogeology Journal, 2005, 13(1): 69-97. |
[16] | Lin Huei-Ting, Cowen J P, Olson E J, et al. Inorganic chemistry, gas compositions and dissolved organic carbon in fluids from sedimented young basaltic crust on the Juan de Fuca Ridge flanks[J]. Geochimica et Cosmochimica Acta, 2012, 85: 213-227. |
[17] | Edwards K J, Bach W, McCollom T M. Geomicrobiology in oceanography: Microbe-mineral interactions at and below the seafloor[J]. Trends in Microbiology, 2005, 13(9): 449-456. |
[18] | Wheat C G, McManus J, Mottl M J, et al. Oceanic phosphorus imbalance: Magnitude of the mid-ocean ridge flank hydrothermal sink[J]. Geophysical Research Letters, 2003, 30(17): 1 895. |
[19] | Reysenbach A L, Banta A B, Boone D R, et al. Biogeochemistry: Microbial essentials at hydrothermal vents[J]. Nature, 2000, 404(6 780): 835. |
[20] | Wang Fengping, Zhou Huaiyang, Meng Jun, et al. GeoChip-based analysis of metabolic diversity of microbial communities at the Juan de Fuca Ridge hydrothermal vent[J]. Proceedings of the National Academy of Sciences, 2009, 106(12): 4 840-4 845. |
[21] | Huber J A, Butterfield D A, Baross J A.Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat[J]. Applied and Environmental Microbiology, 2002, 68(4): 1 585-1 594. |
[22] | Pagé A, Tivey M K, Stakes D S, et al. Temporal and spatial archaeal colonization of hydrothermal vent deposits[J]. Environmental Microbiology, 2008, 10(4): 874-884. |
[23] | Flores G E, Campbell J H, Kirshtein J D, et al. Microbial community structure of hydrothermal deposits from geochemically different vent fields along the Mid-Atlantic Ridge[J]. Environmental Microbiology, 2011, 13(8): 2 158-2 171. |
[24] | Lonsdale P.A deep-sea hydrothermal site on a strike-slip fault[J]. Nature, 1979, 281: 531-534. |
[25] | Paull C K, Hecker B, Commeau R, et al. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa[J]. Science, 1984, 226: 965-968. |
[26] | Tyler P A, Young C M.Reproduction and dispersal at vents and cold seeps[J]. Journal of the Marine Biological Association of the United Kingdom, 1999, 79(2): 193-208. |
[27] | Gibson R N, Atkinson R J A, Gordon J D M. Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes[J]. Oceanography and Marine Biology: An Annual Review, 2005, 43: 1-46. |
[28] | D’Hondt S L, Jorgensen B B, Miller D J, et al. Proceedings of the Ocean Drilling Program, Initial Reports,201[R].Ocean Drilling Program, Texas A & M University,2003, doi:10.2973/odp.proc.ir.201.2003. |
[29] | Expedition 331 Scientists. Deep Hot Biosphere[R]. Integrated Ocean Drilling Program Expedition 331 Preliminary Report. Washington DC:Integrated Ocean Drilling Program Management Internationalxpedition 331 Scientists. Deep Hot Biosphere[R]. Integrated Ocean Drilling Program Expedition 331 Preliminary Report. Washington DC:Integrated Ocean Drilling Program Management International, Inc.,2010,doi:10.2204/iodp.pr.331.2010. |
[30] | Expedition 329 Scientists. South Pacific Gyre Subseafloor Life[R]. IODP Preliminary Report, 329, 2011, doi: 10.2204/iodp.pr.329.2011. |
[31] | Expedition 336 Scientists. Mid-Atlantic Ridge Microbiology: Initiation of Long-Term Coupled Microbiological, Geochemical, and Hydrological Experimentation Within the Seafloor at North Pond, Western Flank of the Mid-Atlantic Ridge[R]. IODP Preliminary Report, 336, 2011, doi: 10.2204/iodp.pr.336.2011. |
[32] | Expedition 337 Scientists. Deep Coalbed Biosphere off Shimokita: Microbial Processes and Hydrocarbon System Associated with Deeply Buried Coalbed in the Ocean[R]. IODP Preliminary Report, 337, 2012, doi:10.2204/iodp.pr.337.2012. |
[33] | Früh-Green G L, Orcutt B N, Green S, et al. Expedition 357 Preliminary Report: Atlantis Massif Serpentinization and Life[R]. International Ocean Discovery Program Preliminary Peports, 2016,doi:10.14379/iodp.pr.357.2016. |
[34] | Heuer V B, Inagaki F, Morono Y, et al. Expedition 370 preliminary report: Temperature limit of the deep biosphere off muroto[J]. International Ocean Discovery Program Preliminary Peports,2017, doi:10.14379/iodp.pr.370.2017. |
[35] | Santelli C M, Orcutt B N, Banning E, et al. Abundance and diversity of microbial life in ocean crust[J]. Nature, 2008, 453(7 195): 653. |
[36] | Cowen J P, Giovannoni S J, Kenig F, et al. Fluids from aging ocean crust that support microbial life[J]. Science, 2003, 299(5 603): 120-123. |
[37] | Jungbluth S P, Grote J, Lin Huei-Ting, et al. Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank[J]. The ISME Journal, 2013, 7(1): 161-172. |
[38] | Zhang Xinxu.Abundance, Diversity and Metabolic Potentials of Subsurface Crustal Microorganisms on the Western Flank of the Mid-Atlantic Ridge[D]. Shanghai: Shanghai Jiao Tong University,2016. |
[38] | [张新旭. 大西洋中脊西侧翼洋壳微生物多样性、功能和代谢潜能研究[D]. 上海:上海交通大学,2016.] |
[39] | Zhang Xinxu, Feng Xiaoyuan, Wang Fengping.Diversity and metabolic potentials of subsurface crustal microorganisms from the western flank of the Mid-Atlantic Ridge[J]. Frontiers in Microbiology, 2016,(7):363. |
[40] | Zhang Xinxu, Fang Jing, Bach W, et al. Nitrogen stimulates the growth of subsurface basalt-associated microorganisms at the western flank of the Mid-Atlantic Ridge[J]. Frontiers in Microbiology, 2016,(7):633. |
[41] | Mason O U, Di Meo-Savoie C A, Van Nostrand J D, et al. Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts[J]. The ISME Journal, 2009, 3(2): 231. |
[42] | Kallmeyer J, Pockalny R, Adhikari R R, et al. Global distribution of microbial abundance and biomass in subseafloor sediment[J]. Proceedings of the National Academy of Sciences, 2012, 109(40): 16 213-16 216. |
[43] | Lloyd K G, May M K, Kevorkian R T, et al. Meta-analysis of quantification methods shows that archaea and bacteria have similar abundances in the subseafloor[J]. Applied and Environmental Microbiology, 2013, 79(24): 7 790-7 799. |
[44] | D’hondt S, Inagaki F, Zarikian C A, et al. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments[J]. Nature Geoscience, 2015, 8(4): 299-304. |
[45] | Inagaki F, Hinrichs K U, Kubo Y, et al. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor[J]. Science, 2015, 349(6 246): 420-424. |
[46] | Liu Changhong, Huang Xin, Xie Tianning, et al. Exploration of cultivable fungal communities in deep coal-bearing sediments from~1.3 to 2.5 km below the ocean floor[J]. Environmental Microbiology, 2017, 19(2): 803-818. |
[47] | Lomstein B A, Langerhuus A T, D’hondt S, et al. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment[J]. Nature, 2012, 484(7 392): 101. |
[48] | Braun S, Mhatre S S, Jaussi M, et al. Microbial turnover times in the deep seabed studied by amino acid racemization modelling[J]. Scientific Reports, 2017, 7(1):5 680. |
[49] | Morono Y, Terada T, Nishizawa M, et al. Carbon and nitrogen assimilation in deep subseafloor microbial cells[J]. Proceedings of the National Academy of Sciences, 2011, 108(45): 18 295-18 300. |
[50] | Trembath-Reichert E, Morono Y, Ijiri A, et al. Methyl-compound use and slow growth characterize microbial life in 2-km-deep subseafloor coal and shale beds[J]. Proceedings of the National Academy of Sciences, 2017,114(44):E9206-E9215. |
[51] | He Ying, Li Meng, Perumal V, et al. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments[J]. Nature Microbiology, 2016,(1): 16 035. |
[52] | Evans P N, Parks D H, Chadwick G L, et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics[J]. Science, 2015, 350(6 259): 434-438. |
[53] | Davis E E, Becker K, Pettigrew T L, et al. Proceedings of the Ocean Drilling Program, Initial Reports, Vol. 139[R].Ocean Drilling Program, Texas A & M University, 1992. |
[54] | Expedition 327 Scientists. Integrated Ocean Drilling Program Expedition 327 Preliminary Report Juan de Fuca Ridge-Flank Hydrogeology:The Hydrogeologic Architecture of Basaltic Oceanic Crust: Compartmentalization, Anisotropy, Microbiology, and Crustal-Scale Properties on the Eastern Flank of Juan de Fuca Ridge, eastern Pacific Ocean[R]. Integrated Ocean Drilling Program Management International, Inc., 2010, doi: 10.2204/iodp.pr.327.2010. |
[55] | Fisher A T, Wheat C G, Becker K, et al. Scientific and Technical Design and Deployment of Longterm, Subseafloor Observatories for Hydrogeologic and Related Experiments, IODP Expedition 301, Eastern Flank of Juan de Fuca Ridge[R]. College Station, TX Integrated Ocean Drilling Program Management International,Inc, 2005,doi:10.2204/iodp.proc.301.103.2005. |
[56] | State Key Laboratory of Marine Geology. Under Water Observatories: The Combination of Science and Technology[M]. Shanghai: Tongji University Press, 2011. |
[57] | Girguis P R, Cozen A E, DeLong E F. Growth and population dynamics of anaerobic methane-oxidizing archaea and sulfate-reducing bacteria in a continuous-flow bioreactor[J]. Applied and Environmental Microbiology, 2005, 71(7): 3725-3733. |
[58] | Deusner C, Meyer V, Ferdelman T G.High-pressure systems for gas-phase free continuous incubation of enriched marine microbial communities performing anaerobic oxidation of methane[J]. Biotechnology and Bioengineering, 2010, 105(3): 524-533. |
[59] | Jagersma G C, Meulepas R J W, Heikamp-de Jong I, et al. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment[J]. Environmental Microbiology, 2009, 11(12): 3 223-3 232. |
[60] | Zhang Yu, Arends J B A, Van de Wiele T, et al. Bioreactor technology in marine microbiology: From design to future application[J]. Biotechnology Advances, 2011, 29(3): 312-321. |
[61] | Zhang Yu, Maignien L, Zhao Xianxian, et al. Enrichment of a microbial community performing anaerobic oxidation of methane in a continuous high-pressure bioreactor[J]. BMC Microbiology, 2011, 11(1): 137. |
[62] | Lasken R S.Single-cell genomic sequencing using multiple displacement amplification[J]. Current Opinion in Microbiology, 2007, 10(5): 510-516. |
[63] | Beal E J, House C H, Orphan V J.Manganese-and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5 937): 184-187. |
[64] | Behrens S, L?sekann T, Pett-Ridge J, et al. Linking microbial phylogeny to metabolic activity at the single-cell level by using enhanced element labeling-catalyzed reporter deposition fluorescence in situ hybridization (EL-FISH) and NanoSIMS[J]. Applied and Environmental Microbiology, 2008, 74(10): 3 143-3 150. |
[65] | Nunoura T, Takaki Y, Kakuta J, et al. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group[J]. Nucleic Acids Research, 2010, 39(8): 3 204-3 223. |
[66] | Hallam S J, Mincer T J, Schleper C, et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota[J]. PLoS Biology, 2006, 4(12): 520-536. |
[67] | Bickle M, Arculus R, Barrett P, et al. Illuminating Earth’s Past, Present and Future. The Science Plan for the International Ocean Discovery Program 2013-2023[R]. Washington DC: Integrated Ocean Drilling Program, 2011. |
[68] | Yin Qi, Fu Bingbing, Li Bingyu, et al. Spatial variations in microbial community composition in surface seawater from the ultra-oligotrophic center to rim of the South Pacific Gyre[J]. PLoS ONE, 2013, 8(2): e55148. |
[69] | Zhang Yao, Liang Pan, Xie Xiabing, et al. Succession of bacterial community structure and potential significance along a sediment core from site U1433 of IODP expedition 349, South China Sea[J]. Marine Geology, 2017, 394: 125-132. |
[70] | Fang Jiasong, Kato C, Runko G M, et al. Predominance of Viable Spore-Forming Piezophilic Bacteria in High-Pressure Enrichment Cultures from ~1.5 to 2.4 km-Deep Coal-Bearing Sediments below the Ocean Floor[J]. Frontiers in Microbiology, 2017,8:137. |
[71] | Cao Huiluo, Wang Yong, Lee O O, et al. Microbial sulfur cycle in two hydrothermal chimneys on the Southwest Indian Ridge[J]. Mbio, 2014, 5(1): e00980. |
[72] | Jiang Lijing, L’Haridon S, Jebbar M, et al. Complete genome sequence and whole-genome phylogeny of Kosmotoga pacifica type strain SLHLJ1 T from an East Pacific hydrothermal sediment[J].Standards in Genomic Sciences, 2017, 12(1): 3. |
[73] | Xu Hongxiu, Jiang Lijing, Li Shaoneng, et al. Diversity of culturable sulfur-oxidizing bacteria in deep-sea hydrothermal vent environments of the South Atlantic[J]. Acta Microbiologica Sinica, 2016, 56(1):88. |
[74] | Jiang Lijing, Xu Hongxiu, Zeng Xiang, et al. Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter[J]. Research in Microbiology, 2015, 166(9): 677-687. |
[75] | Zhao Weishu, Zeng Xianping, Xiao Xiang.Thermococcus eurythermalis sp. nov., A conditional piezophilic, hyperthermophilic archaeon with a wide temperature range for growth, isolated from an oil-immersed chimney in the Guaymas Basin[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(1): 30-35. |
[76] | Zhao Weishu, Xiao Xiang.Complete genome sequence of Thermococcus eurythermalis A501, a conditional piezophilic hyperthermophilic archaeon with a wide temperature range, isolated from an oil-immersed deep-sea hydrothermal chimney on Guaymas Basin[J]. Journal of Biotechnology, 2015, 193: 14-15. |
[77] | Zhang Yu, Li Xuegong, Bartlett D H, et al. Current developments in marine microbiology: High-pressure biotechnology and the genetic engineering of piezophiles[J]. Current Opinion in Biotechnology, 2015, 33: 157-164. |
[78] | Zhao Weishu, Xiao Xiang.Life in a multi-extreme environment: Thermococcales living in deep sea hydrothermal vents[J]. Scientia Sinica Vitae, 2017, 47(5): 470-481. |
[79] | Niu Mingyang, Fan Xibei, Zhuang Guangchao, et al. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea[J]. FEMS Microbiology Ecology, 2017, 93(9),doi:10.1093/femsec/fix101. |
[80] | Niu Mingyang, Liang Qianyong, Feng Dong, et al. Ecosystems of cold seeps in the South China Sea[C]∥Jens Kallmeyer,ed. Life at Vents and Seeps. Berlin/Boston:Walter de Gruyter GmbH, 2017:139-160. |
/
〈 |
|
〉 |