大洋钻探科学目标展望

极地地质钻探研究进展与展望

  • 王汝建 ,
  • 肖文申 ,
  • 章陶亮 ,
  • 聂森艳
展开
  • 同济大学海洋地质国家重点实验室,上海 200092

作者简介:王汝建(1959-),男,云南昆明人,教授,主要从事极地古海洋与古气候学研究.E-mail:rjwang@tongji.edu.cn

收稿日期: 2017-10-16

  修回日期: 2017-11-25

  网络出版日期: 2018-03-06

基金资助

*国家自然科学基金项目“南极罗斯海扇区晚第四纪的古海洋与古气候演变历史及其对全球气候变化的响应”(编号:41776191)和“重建晚第四纪冰期—间冰期西北冰洋筏冰输运和表层洋流演变历史”(编号:41776187)资助.

版权

, 2017,

Geological Drilling in Polar Regions: Progress and Perspectives

  • Rujian Wang ,
  • Wenshen Xiao ,
  • Taoliang Zhang ,
  • Senyan Nie
Expand
  • State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092,China

First author:Wang Rujian(1959-), male, Kunming City, Yunnan Province, Professor. Research areas include polar paleoceanography and paleoclimate.E-mail:rjwang@tongji.edu.cn

Received date: 2017-10-16

  Revised date: 2017-11-25

  Online published: 2018-03-06

Supported by

Project supported by the National Natural Science Foudation of China“Late Quaternary paleoceanographic and paleoclimatic evolutionary histories in the Antarctic Ross Sea and their responses to global climate change”(No.41776191) and “Reconstructions of late Quaternary glacial-interglacial ice rafting and surface circulation changes in the Western Arctic Ocean”(No.41776187).

Copyright

地球科学进展 编辑部, 2017,

摘要

南北极在全球海平面变化和碳循环中扮演着关键角色,并蕴藏着地球如何从新生代初期的温室转向现代冰室演变过程的关键信息,因而成为地球科学研究的热点地区。极地地质钻探计划(如DSDP/ODP/IODP/ICDP)研究所取得的成就令人瞩目,刷新了人类对过去全球变化的认识,成为探究地球气候系统演化的一个窗口。通过这些钻探计划,发现了新生代以来气候变冷,南北极冰盖几乎同时形成;揭示了南极冰盖形成和陆地风化的加剧,导致南极中深层水和底层水的生产加速并向北推进,造成全球大洋环流的重大变化;南大洋对大气CO2的调控作用、全球大洋深部循环、营养盐的分布和海洋生产力等多方面在不同时间尺度上都发挥着重要作用;检验了南北极冰盖形成和消融与海平面变化的关系,为人类预测未来海平面变化提供了历史依据。未来的南北极国际大洋发现(IODP)计划将继续关注于极地冰盖的演变历史、南大洋古海洋学演变历史,追踪北极海—陆环境的联系及其对全球气候的影响。这些结果将对未来全球气候预测提供重要的参考和边界条件。

本文引用格式

王汝建 , 肖文申 , 章陶亮 , 聂森艳 . 极地地质钻探研究进展与展望[J]. 地球科学进展, 2017 , 32(12) : 1236 -1244 . DOI: 10.11867/j.issn.1001-8166.2017.12.1236

Abstract

The Antarctic and the Arctic regions play a key role in global sea level change and carbon cycle, and reserve key information of the Cenozoic transition from a green-house to an ice-house Earth. They have become hot spots in earth science studies. The geological drilling projects in both polar regions (e.g., DSDP/ODP/IODP/ICDP) have achieved remarkable successes, which have freshened the knowledge of global environmental and climatic evolution. Along with the Cenozoic global cooling, the timing of glaciation was almost synchronous on both the Antarctic and the Arctic. Accompanied with the Antarctic ice sheet build-up and increased terrestrial weathering, the enhanced formation of Antarctic Bottom Water exerts significant impact on global ocean circulation. The volume of unstable West Antarctic Ice Sheet fluctuates during glacial-interglacial periods showing 40 ka obliquity cycles, its volume significantly reduced or collapsed during several peak interglacials or long warm intervals. The Southern Ocean plays a significant role modulating atmospheric CO2 concentration, global deep water circulation and nutrient distribution, productivity at different time scales. Sea level responses to the waxing and waning of polar ice sheets at different time intervals were tested, which provide valuable clue for predicting future sea level changes. The upcoming IODP drilling projects on polar regions will keep focusing on the high latitude ice sheet development, Southern Ocean paleoceanographic evolution, land-ocean linkages in the Arctic, and the impacts on the global climate, which will provide important boundary conditions for predicting global future climate evolution.

参考文献

[1] Pritchard H, Arthern R, Vaughan D, et al. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets[J]. Nature, 2009, 461(7 266): 971-975.
[2] Paolo F, Fricker H, Padman L.Volume loss from Antarctic ice shelves is accelerating[J]. Science, 2015, 348(6 232): 327-331.
[3] DeConto R, Pollard D. Contribution of Antarctica to past and future sea-level rise[J]. Nature, 2016, 531(7 596): 591-597.
[4] Pollard D, DeConto R. Modelling west Antarctic ice sheet growth and collapse through the past five million years[J]. Nature, 2009, 458(7 236): 329-333.
[5] Naish T, Powell R, Levy R.Obliquity-paced Pliocene West Antarctic ice sheet oscillations[J]. Nature,2009, 458(7 236): 322-329.
[6] Dutton A, Carlson A, Long A, et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods[J]. Science, 2015, 349(6 244): 153-162, doi:10.1126/science.aaa4019.
[7] Schaefer J, Finkel R, Balco G, et al. Greenland was nearly ice-free for extended periods during the Pleistocene[J]. Nature, 2016, 540(7 632): 252-255.
[8] Chen X, Tung K.Varying planetary heat sink led to global-warming slowdown and acceleration[J]. Science, 2014, 345(6 199): 897-903.
[9] Menezes V, Macdonald A, Schatzman C.Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean[J]. Science Advances, 2017, 3(1): 1-9.
[10] Ito T, Woloszyn M, Mazloff M.Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow[J]. Nature, 2010, 463(7 277): 80-83.
[11] Imbrie J, Berger A, Boyle E, et al. On the structure and origin of major glaciation cycles 2. The 100,000-year cycle[J]. Paleoceanography, 1993, 8(6): 699-735.
[12] Bickle M, Arculus R, Barrett P, et al. Illuminating Earth’s Past, Present, and Future: IODP Science Plan for 2013-2023[R].Washington DC: Intergrated Ocean Discaiery Program,2011.
[13] Wang Rujian.Progress of ocean drilling in polar regions[J]. Advance in Earth Sciences, 2003, 18(5): 697-705.
[13] [王汝建. 极地海洋钻探研究进展[J]. 地球科学进展, 2003, 18(5): 697-705.]
[14] Davey F, Barrett P, Cita M, et al. Drilling for Antarctic Cenozoic climate and tectonic history at Cape Roberts, Southwestern Ross Sea[J]. EOS, Transactions American Geophysical Union, 2001, 82(48): 585-600.
[15] Naish T, Powell R, Levy R, et al. A record of Antarctic climate and ice sheet history recovered[J]. EOS, Transactions American Geophysical Union, 2007, 88(50): 557-568.
[16] Melles M, Brigham-Grette J, Pavel M, et al. 2.8 Million years of Arctic climate change from the Lake El’gygytgyn, NE Russia[J]. Science, 2012, 337(6 092): 315-320.
[17] Hayes D, Davey F.A geophysical study of the Ross Sea, Antarctica[M]∥Hayes D, Frakes L,eds. Initial Reports of the Deep Sea Drilling Project. Washington DC: US Government Printing Office, 1975: 887-907.
[18] Hambrey M, McKelvey B. Major Neogene fluctuations of the East Antarctic ice sheet: Stratigraphic evidence from the Lambert Glacier region[J]. Geology, 2000, 28(10): 887-890.
[19] Zachos J, Breza J, Wise S.Early Oligocene ice-sheet expansion on Antarctica: Stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean[J]. Geology, 1992, 20(6): 569-573.
[20] Zachos J, Quinn T, Salamy K.High resolution (104 yr) deep-sea foraminiferal stable isotope time series[J]. Paleoceanography, 1996, 11(3): 251-266.
[21] Kennett J.Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global paleoceanography[J]. Journal of Geophysical Research, 1977, 82(27): 3 843-3 860.
[22] DeConto R, Pollard D, Wilson P,et al. Thresholds for Cenozoic bipolar glaciation[J]. Nature, 2003, 455(7 213): 652-656.
[23] Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5 517):686-693.
[24] Zachos J, Dickens G, Zeebe R.An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics[J]. Nature, 2008, 451(7 176): 281-283.
[25] Eldrett J, Harding I, Wilson P,et al. Continental ice in Greenland during the Eocene and Oligocene[J]. Nature, 2007, 446(7 132): 176-179.
[26] St John K.Cenozoic ice-rafting history of the Central Arctic Ocean: Terrigenous sands on the Lomonosov Ridge[J]. Paleoceanography, 2008, 23(1),doi:10.1029/2007PA001483.
[27] Tripati A, Zachos J, Marincovich L, et al. Late Paleocene Arctic coastal climate inferred from molluscan stable and radiogenic isotope ratios[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2001, 170(1):101-113.
[28] Stickley C, St John, Koc N, et al. Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris[J]. Nature, 2009, 460(7 253): 376-380.
[29] Sluijs A, Schouten S, Pagani M, et al. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum[J]. Nature, 2006, 441(7 093): 610-613.
[30] Weller P, Stein R.Paleogene biomarker records from the central Arctic Ocean (IODP Expedition 302): Organic-carbon sources, anoxia, and sea-surface temperature[J]. Paleoceanography, 2008, 23(1), doi:10.1029/2007PA001472.
[31] DeConto R, Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2[J]. Nature, 2003, 421(6 920): 245-249.
[32] Paelike H, Lyle M, Nishi H, et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth[J]. Nature, 2012, 488(7 413): 609-614.
[33] Basak C, Martin E.Antarctic weathering and carbonate compensation at the Eocene-Oligocene transition[J]. Nature Geoscience, 2013, 6(2): 121-124.
[34] Elsworth G, Galbraith E, Halverson G, et al. Enhanced weathering and CO2 drawdown caused by latest Eocene strengthening of the Atlantic meridional overturning circulation[J]. Nature Geoscience, 2017, 10(3): 213-216.
[35] Goldner A, Herold N, Huber M.Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition[J]. Nature, 2014, 511(7 511): 574-578.
[36] Falkowski P, Katz M, Knoll A, et al. The evolution of modern eukaryotic phytoplankton[J]. Science, 2004, 305(5 682): 354-360.
[37] Finkel Z, Katz M, Wright J, et al. Climatically driven macroevolutionary patterns in the size of marine diatoms over the Cenozoic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(25): 8 927-8 932.
[38] Hillenbrand C, Erhmann W.Late Neogene to Quaternary environmental changes in the Antarctic Peninsula region: Evidence from drift sediments[J]. Global and Planetary Change, 2005, 45(1): 165-191.
[39] Crampton J, Cody R, Levy R,et al. Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years[J]. Proceedings of the National Academy of Sciences, 2016, 113(25): 6 868-6 873.
[40] Paelike H, Norris R, Herrle J, et al. The heartbeat of the Oligocene climate system[J]. Science, 2006, 314(5 807): 1 894-1 898.
[41] Flower B, Kennett J.The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 537-555.
[42] Kennett J, Barker P.Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: An ocean-drilling perspective[J]. Proceeding Ocean Drilling Program, Scientific Results, 1994, 113: 937-960.
[43] Scherer R, Aldahan A, Tulaczyk S, et al. Pleistocene collapse of the West Antarctic Ice sheet[J]. Science,1998, 281(5 373): 82-85.
[44] Huybrechts P.Global change: West-side story of Antarctic ice[J]. Nature,2009, 458(7 236): 295-296.
[45] Dutton A, Lambeck K.Ice volume and sea level during the last interglacial[J]. Science,2012, 337(6 091): 216-219.
[46] Hillenbrand C, Kuhn G, Frederichs T.Record of a Mid-Pleistocene depositional anomaly in West Antarctic continental margin sediments: An indicator for ice-sheet collapse?[J].Quaternary Science Reviews,2009, 28(13): 1 147-1 159.
[47] Weber M, Clark P, Kuhn G, et al. Millennial-scale variability in Antarctic ice-sheet discharge during the last deglaciation[J]. Nature,2014, 510(7 503): 134-138.
[48] Bentley M, Fogwill C, le Brocq A, et al. Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea embayment Constraints on past ice volume change[J]. Geology, 2010, 38(5): 411-414.
[49] Martinez-Garcia A, Rosell-Mele A, Jaccard S, et al. Southern Ocean dust-climate coupling over the past four million years[J]. Nature, 2011, 476(7 360): 312-315.
[50] Jaccard S, Hayes C, Martinez-Garcia, et al. Two modes of change in Southern Ocean productivity over the past million years[J]. Science,2013, 339(6 126): 1 419-1 423.
[51] Lamy F, Gersonde R, Winckler G,et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods[J]. Science, 2014, 343(6 169): 403-407.
[52] Wolff E, Barbante C, Becagli S, et al. Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core[J]. Quaternary Science Reviews, 2010, 29(1): 285-295.
[53] Anderson L, Bj?rk E, Holby O, et al. Water masses and circulation in the Eurasian Basin: Results from the Oden 91 expedition[J]. Journal of Geophysical Research, 1994, 99(C2) : 3 273-3 283.
[54] Ronge T A, Steph S, Tiedemann R, et al. Pushing the boundaries: Glacial/interglacial variability of intermediate and deep waters in the southwest Pacific over the last 350,000 years[J]. Paleoceanography, 2015, 30(2): 23-38.
[55] Ronge T, Tiedemann R, Lamy F, et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool[J]. Nature Communication, 2016, 7: 11 487, doi: 10.1038/ncomms11487.
[56] Abelmann A, Gersonde R, Cortese G, et al. Extensive phytoplankton blooms in the Atlantic sector of the glacial Southern Ocean[J]. Paleoceanography, 2006, 21(1), doi: 10.1029/2005PA001199.
[57] Abelmann A, Gersonde R, Knorr G, et al. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink[J]. Nature Communications, 2015, 6:8 136, doi: 10.1038/ncomms9136.
[58] Bradtmiller L, Anderson R, Fleisher M, et al. Opal burial in the equatorial Atlantic Ocean over the last 30 ka: Implications for glacial-interglacial changes in the ocean silicon cycle[J]. Paleoceanography, 2007, 22(4), doi:10.1029/2007PA001443.
[59] Griffiths J, Barker S, Hendry K, et al. Evidence of silicic acid leakage to the tropical Atlantic via Antarctic Intermediate Water during Marine Isotope Stage 4[J]. Paleoceanography, 2013, 28(2): 307-318.
[60] Meckler A, Sigman D, Gibson K, et al. Deglacial pulses of deep-ocean silicate into the subtropical North Atlantic Ocean[J]. Natrue, 2013, 495(7 442): 495-499.
[61] Hendry K, Gong X, Knorr G, et al. Deglacial diatom production in the tropical North Atlantic driven by enhanced silicic acid supply[J]. Earth and Planetary Science Letters, 2016, 438: 122-129.
[62] Thiede J, Myhre A.Introduction to the North Atlantic-Arctic gateways: Plate tectonic 2 paleoceanographic history and significance[M]∥Thiede J, Myhre A, Firth J, et al, eds. Proceedings of the Ocean Drilling Program, Scientific Results,1996, 151: 3-23.
[63] Backman J, Moran K, McInroy D, et al. Proceedings IODP, 302: Edinburgh[R].Integrated Ocean Drilling Program Management International, Inc., 2006, doi:10.2204/iodp.proc.302.104.2006.
[64] Backman J, Jakobsson M, Frank M, ,et al. Age model. Age model and core-seismic integration for the Cenozoic ACEX sediments from the Lomonosov Ridge[J]. Paleoceanography, 2008, 23(1), PA1S03, doi:10.1029/2007PA001476.
[65] Moran K, Backman J, Brinkhuis H, et al. The Cenozoic palaeoenvironment of the Arctic Ocean[J].Nature,2006, 441(7 093): 601-605.
[66] Backman J, Moran K.Introduction to special section on Cenozoic Paleoceanography of the Central Arctic Ocean[J].Paleoceanography,2008, 23(1), doi:10.1029/2007PA001516.
[67] Backman J, Moran K.Expanding the Cenozoic paleoceano-graphic record in the Central Arctic Ocean: IODP Expedition 302 Synthesis[J]. Central European Journal of Geo-Sciences,2009,1(2): 157-175, doi:10.2478/v10085-009-0015-6.
[68] Brigham-Grette J, Melles M, Pavel M, et al. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia[J]. Science,2013, 340(6 139): 1 421-1 426.
[69] Fronval T, Jansen E.Late Neogene paleoclimates and paleoceanography in the Iceland-Norwegian Sea: Evidence from the Iceland and V?ing Plateaus[C]∥Thiede J, et al, eds.Proceedings of the Ocean Drilling Program, Scientific Results, Ocean Drilling Program: College Station. Texas, 1996: 455-468, doi:10.2973/odp.proc.sr.151.134.1996.
[70] Wright J, Miller K.Control of North Atlantic deep water circulation by the Greenland-Scotland Ridge[J]. Paleoceanography,1996, 11(2): 157-170.
[71] Thiede J, Winkler A, Wolf-Welling T, et al. Late Cenozoic history of the Polar North Atlantic: Results from ocean drilling[C]∥Elverhoi A,ed. Glacial and Oceanic History of the Polar North Atlantic Margins. Quaternary Science Review, 1998, 17: 185-208.
[72] Thiede J, Jenssen C, Knutz P, et al. Millions of years of Greenland Ice Sheet History recorded in ocean sediments[J]. Polarforschung, 2011, 80(3): 141-159.
[73] John K E K S, Krissek L A. The late Miocene to Pleistocene ice-rafting history of southeast Greenland[J].Boreas,2002, 31(1): 28-35.
[74] Brinkhuis H, Schouten S, Collinson M, et al. Episodic fresh surface waters in the Eocene Arctic Ocean[J]. Nature,2006, 441(7 093): 606-609.
[75] Pagani M, Zachos J, Freeman K, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene[J]. Science,2005, 309(5 734): 600-603.
[76] Stein R, Boucsein B, Meyer H.Anoxia and high primary production in the Paleogene central Arctic Ocean: First detailed records from Lomonosov Ridge[J]. Geophysical Research Letter, 2006, 33(18), doi:10.1029/2006GL026776.
[77] Stein R.Upper Cretaceous/Lower Tertiary black shales near the North Pole: Organic-carbon origin and source-rock potential[J]. Marine and Petroleum Geology,2007, 24(2): 67-73.
[78] Jakobsson M, Polyak L, Darby D A. Arctic ocean: Glacial history from multibeam mapping and coring during the HOTRAX (2005) and LOMROG (2007) Expeditions[C]∥AGU Fall Meeting Abstracts. 2007.
[79] Stein R, Jokat W, Brinkhuis H, et al. Arctic Ocean Paleoceanography: Towards a continuous cenozoic record from a Greenhouse to an Icehouse World (ACEX2)[Z].IODP Proposal,2013.
[80] O’Regan M. Late Cenozoic Paleoceanography of the Central Arctic Ocean [C]∥IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2011, 14(1),doi:10.1088/1755-1315/14/1/012002.
[81] Kennicutt II M, Chown S, Cassano J, et al. Six priorities for Antarctic science[J]. Nature,2014, 512(7 512): 23-25.
[82] ICARP IIII.Integrating Arctic Research: A Roadmap for the Future[EB/OL]. http:/icarp.iasc.info/,2016.
文章导航

/