地球科学进展 >
2016 , Vol. 31 >Issue 3: 277 - 285
DOI: https://doi.org/10.11867/j.issn.1001-8166.2016.03.0277.
热带海洋生产力:现代过程与地质记录
作者简介:张洪瑞(1992-),男,辽宁盘锦人,博士研究生,主要从事古海洋学研究.E-mail:103443_rui@tongji.edu.cn
收稿日期: 2016-01-25
修回日期: 2016-02-25
网络出版日期: 2016-03-10
版权
Tropical Marine Productivity:The Modern Progress and Paleoproductivity Records
First author:Zhang Hongrui(1992-), male, Panjin City, Liaoning Province, PhD candidate. Research area include paleoceanography.E-mail:103443_rui@tongji.edu.cn
Corresponding author:Liu Chuanlian (1963-), male, Jining City,Shandong Province, Professor. Research areas include marine micropaleontology and paleoceanography.E-mail:liucl@tongji.edu.cn
Received date: 2016-01-25
Revised date: 2016-02-25
Online published: 2016-03-10
Supported by
Project supported by the National Natural Science Foundation of China “From indoor culturing to geological records: Exploring the role of coccolithophores in the carbon cycle of the South China Sea” (No.91228204) and “Modern coccolithophores in the Yellow Sea and the East China Sea and their response to environment” (No.41376047)
Copyright
首先综述了现代热带海洋生产力的分类与影响因素,然后讨论了古生产力替代性指标的分类与各类方法的优点与局限性。在此基础上,通过收集整理前人使用不同替代性指标对热带海洋古生产力重建的结果,讨论了热带海洋古生产力记录的特征、周期性与驱动机制。发现从末次冰期到全新世热带海洋古生产力在冰期时明显偏高,但冰期生产力高间冰期生产力低的规律并不一直适用,MIS 22前后西太平洋初级生产力在冰期—间冰期的变化发生反转。热带海洋古生产力的周期性也与高纬海区显著不同,岁差和斜率的信号更为显著。还存在约30 ka等不同轨道周期叠加之后形成的周期。颗石藻计算的海洋生产力可能存在约400 ka周期,这对全球碳同位素的影响有待深入研究。
张洪瑞 , 刘传联 , 梁丹 . 热带海洋生产力:现代过程与地质记录[J]. 地球科学进展, 2016 , 31(3) : 277 -285 . DOI: 10.11867/j.issn.1001-8166.2016.03.0277.
The classification and influencing factors of modern marine productivity were reviewed at the beginning. We discussed the pros and cons of different paleoproductivity proxies. Based on these discussions, we collected paleoproductivity reconstructions in tropical marine from previous studies and focus on the glacial-interglacial features, periodicity and forcing mechanisms of tropical marine productivity. We found that the productivity in most tropical sites decreased from MIS 2 to MIS 1. The productivity was not always higher in glacial: The glacial-interglacial pattern of productivity turned at MIS 22 in western Pacific. There were remarkable differences between tropical productivity and high latitude productivity. The precession and obliquity bands were more significant in tropical productivity and ~30 ka cycles caused by the superimposing of different orbital cycles were common in tropical. The coccolith based productivity seemed to have a quasiperiod of 400 ka and more researches are needed to discover the relationship between productivity and global 13C in this band.
[1] | Wang P, Li Q, Tian J, et al.Long-term cycles in the carbon reservoir of the Quaternary ocean: A perspective from the South China Sea[J].National Science Review,2014,1(11):119-143. |
[2] | Martin J H.Glacial-interglacial CO2 change[J]. Paleoceanography,1990, 5(1): 1-13. |
[3] | Peterson B J.Particulate organic matter flux and planktonic new production in the deep ocean[J].Nature,1979, 282: 677-680,doi:10.1038/282677ao. |
[4] | Berger W, Smetacek V, Wefer G.Ocean productivity and paleoproductivity-An overview[R]∥Productivity of the Oceans Present and Past: Report of the Dahlem Workshop on Productivity of the Ocean. Berlin: Life Sciences Research Reports 44, Wiley & Sons, Chichester, 1989:1-34. |
[5] | Stewart R H.Introduction to Physical Oceanography[D].Texas:Texas A & M University,2004. |
[6] | Chen Y L L, Chen H Y, Lin I I, et al. Effects of cold eddy on phytoplankton production and assemblages in Luzon Strait bordering the South China Sea[J].Journal of Oceanography,2007, 63(4): 671-683. |
[7] | Lin I, Liu W T, Wu C C, et al.New evidence for enhanced ocean primary production triggered by tropical cyclone[J]. Geophysical Research Letters,2003, 30(13),doi:10.1029/2003GL017141. |
[8] | Zhang J, Wang P, Li Q,et al.Western equatorial Pacific productivity and carbonate dissolution over the last 550 kyr: Foraminiferal and nannofossil evidence from ODP Hole 807A[J]. Marine Micropaleontology,2007, 64(3): 121-140. |
[9] | Jian Z, Wang L, Kienast M, et al.Benthic foraminiferal paleoceanography of the South China Sea over the last 40,000 years[J]. Marine Geology,1999,156(1): 159-186. |
[10] | Lukas R, Lindstrom E.The mixed layer of the western equatorial Pacific Ocean[J].Journal Geophysical Research,1991, 96: 3 343-3 357. |
[11] | Francois R, Honjo S, Krishfield R, et al. Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean[J].Global Biogeochemical Cycles,2002, 16(4): 34-1-34-20. |
[12] | Wakeham S G, Canuel E A.Degradation and preservation of organic matter in marine sediments[M]∥Marine Organic Matter: Biomarkers, Isotopes and DNA.Berlin:Springer, 2006:295-321. |
[13] | Armstrong R A, Lee C, Hedges J I, et al.A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2001, 49(1): 219-236. |
[14] | Ziveri P, de Bernardi B, Baumann K H, et al. Sinking of coccolith carbonate and potential contribution to organic carbon ballasting in the deep ocean[J].Deep Sea Research Part II: Topical Studies in Oceanography,2007, 54(5): 659-675. |
[15] | Betzer P R, Showers W J, Laws E A, et al.Primary productivity and particle fluxes on a transect of the equator at 153 W in the Pacific Ocean[J]. Deep Sea Research Part I: Oceanographic Research Papers, 1984, 31(1): 1-11. |
[16] | Hartnett H E, Keil R G, Hedges J I, et al.Influence of oxygen exposure time on organic carbon preservation in continental margin sediments[J].Nature,1998, 391(6 667): 572-575. |
[17] | Kuehl S A, Fuglseth T J, Thunell R C.Sediment mixing and accumulation rates in the Sulu and South China Seas: Implications for organic carbon preservation in deep-sea environments[J].Marine Geology,1993, 111(1): 15-35. |
[18] | Prell W, Curry W.Faunal and isotopic indices of monsoonal upwelling-western arabian sea[J].Oceanologica Acta,1981, 4(1): 91-98. |
[19] | Beaufort L, Lancelot Y, Camberlin P, et al.Insolation cycles as a major control of equatorial Indian Ocean primary production[J].Science,1997,278(5 342):1 451-1 454. |
[20] | Jorissen F J, Fontanier C, Thomas E.Chapter seven paleoceanographical proxies based on deep-sea benthic foraminiferal assemblage characteristics[J].Developments in Marine Geology,2007, 1: 263-325,doi:10.1016/S1572-5480(07)010123. |
[21] | Radi T, de Vernal A. Dinocyst distribution in surface sediments from the northeastern Pacific margin (40-60 N) in relation to hydrographic conditions, productivity and upwelling[J].Review of Palaeobotany and Palynology,2004, 128(1): 169-193. |
[22] | Cermeño P, Dutkiewicz S, Harris R P, et al.The role of nutricline depth in regulating the ocean carbon cycle[J].Proceedings of the National Academy of Sciences,2008, 105(51): 20 344-20 349. |
[23] | Delaney M.Miocene benthic foraminiferal Cd/Ca records: South Atlantic and western equatorial Pacific[J].Paleoceanography,1990, 5(5): 743-760. |
[24] | Rickaby R, Elderfield H.Planktonic foraminiferal Cd/Ca: Paleonutrients or paleotemperature?[J].Paleoceanography,1999, 14(3): 293-303. |
[25] | Stoll H M, Schrag D P.Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate[J]. Geochemistry, Geophysics, Geosystems,2000, 1(5),doi:10.1029/1999GC000015. |
[26] | Higginson M J, Maxwell J R, Altabet M A.Nitrogen isotope and chlorin paleoproductivity records from the Northern South China Sea: Remote vs. local forcing of millennial-and orbital-scale variability[J]. Marine Geology,2003, 201(1): 223-250. |
[27] | Ren H, Sigman D M, Thunell R C, et al.Nitrogen isotopic composition of planktonic foraminifera from the modern ocean and recent sediments[J].Limnology and Oceanography,2012, 57(4): 1 011-1 024. |
[28] | De La Rocha C L, Brzezinski M A, DeNiro M J, et al. Silicon-isotope composition of diatoms as an indicator of past oceanic change[J].Nature,1998, 395(6 703): 680-683. |
[29] | Huang Yongjian, Wang Chengshan, Wang Yunliang, Progress in the study of proxies of paleocean productivity[J].Earth Science Frontiers,2005,12(2):163-170. |
[29] | [黄永建, 王成善, 汪云亮. 古海洋生产力指标研究进展[J]. 地学前缘, 2005, 12(2):163-170.] |
[30] | Lopes C, Kucera M, Mix A C.Climate change decouples oceanic primary and export productivity and organic carbon burial[J]. Proceedings of the National Academy of Sciences,2015, 112(2): 332-335. |
[31] | Francois R, Frank M, Rutgers van der Loeff M M, et al. 230Th normalization: An essential tool for interpreting sedimentary fluxes during the late Quaternary[J].Paleoceanography,2004, 19(1),doi:10.1029/2003PA000939. |
[32] | Geibert W,Rutgers van der Loeff M M, Usbeck R,et al.Quantifying the opal belt in the Atlantic and southeast Pacific sector of the Southern Ocean by means of 230Th normalization[J].Global biogeochemical cycles,2005,19,doi:1029/2005GB002465.8. |
[33] | Marcantonio F, Lyle M, Ibrahim R.Particle sorting during sediment redistribution processes and the effect on 230Th-normalized mass accumulation rates[J].Geophysical Research Letters,2014, 41(15): 5 547-5 554. |
[34] | Rosell-Melé A, McClymont E L. Chapter eleven biomarkers as paleoceanographic proxies[J].Developments in Marine Geology,2007, 1: 441-490,doi:10.1016/(S1572-5480107)01016-6. |
[35] | Calvert S, Pedersen T.Chapter fourteen elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: Interpretation and application[J].Developments in Marine Geology,2007, 1: 567-644,doi:10.1016/S15725480(07)01019-6. |
[36] | Matthews K A, Grottoli A G, McDonough W F,et al.Upwelling, species, and depth effects on coral skeletal cadmium-to-calcium ratios (Cd/Ca)[J].Geochimica et Cosmochimica Acta,2008, 72(18): 4 537-4 550. |
[37] | Ravelo A C, Hillaire-Marcel C.Chapter eighteen the use of oxygen and carbon isotopes of foraminifera in paleoceanography[J].Developments in Marine Geology,2007, 1: 735-764,doi:10.1016/S1572-5480(07)01023-8. |
[38] | Petit J R, Jouzel J, Raynaud D, et al.Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica[J].Nature,1999, 399(6 735): 429-436. |
[39] | Kohfeld K E, Le Quéré C, Harrison S P, et al.Role of marine biology in glacial-interglacial CO2 cycles[J]. Science,2005, 308(5 718): 74-78. |
[40] | Behrenfeld M J, Falkowski P G.Photosynthetic rates derived from satellite-based chlorophyll concentration[J].Limnology and Oceanography,1997, 42(1): 1-20. |
[41] | Huang C Y, Wu S F, Zhao M, et al.Surface ocean and monsoon climate variability in the South China Sea since the last glaciation[J].Marine Micropaleontology,1997, 32(1): 71-94. |
[42] | Kawahata H, Eguchi N.Biogenic sediments on the Eauripik Rise of the western equatorial Pacific during the late Pleistocene[J].Geochemical Journal,1996, 30(4): 201-215. |
[43] | Lyle M, Mix A, Pisias N. Patterns of CaCO3 deposition in the eastern tropical Pacific Ocean for the last 150 kyr: Evidence for a southeast Pacific depositional spike during marine isotope stage (MIS) 2[J].Paleoceanography,2002, 17(2): 3-1-3-13. |
[44] | López-Otlvaro G E, Flores J A, Sierro F J, et al. Variations in coccolithophorid production in the Eastern Equatorial Pacific at ODP Site 1240 over the last seven glacial-interglacial cycles[J].Marine Micropaleontology,2008, 69(1): 52-69. |
[45] | Schlünz B, Schneider R, Müller P, et al.Late Quaternary organic carbon accumulation south of Barbados:Influence of the Orinoco and Amazon rivers?[J].Deep-Sea Research Part I: Oceanographic Research Papers,2000, 47(6): 1 101-1 124. |
[46] | Flores J A, Brcena M, Sierro F.Ocean-surface and wind dynamics in the Atlantic Ocean off Northwest Africa during the last 140 000 years[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2000,161(3): 459-478. |
[47] | Schneider R, Price B, Müller P, et al.Monsoon related variations in Zaire (Congo) sediment load and influence of fluvial silicate supply on marine productivity in the east equatorial Atlantic during the last 200,000 years[J].Paleoceanography, 1997, 12(3): 463-481. |
[48] | Beaufort L, de Garidel-Thoron T, Mix A C, et al. ENSO-like forcing on oceanic primary production during the late Pleistocene[J].Science,2001, 293(5 539): 2 440-2 444. |
[49] | Takahashi T, Sutherland S C, Sweeney C, et al.Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects[J].Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(9): 1 601-1 622. |
[50] | Liu C, Wang P, Tian J, et al.Coccolith evidence for Quaternary nutricline variations in the southern South China Sea[J].Marine Micropaleontology,2008, 69(1): 42-51. |
[51] | Wang Rujian, Li Jian.The high resulation record of opal and palaeoceangraphy siginifacane of ODP 1143 in the South China Sea[J].China Science Bulletin,2003, 48(1): 74-77. |
[51] | [王汝建,李建. 南海ODP 1143 站第四纪高分辨率的蛋白石记录及其古生产力意义[J]. 科学通报, 2003, 48(1): 74-77.] |
[52] | Sun Hanjie, Li Tiegang, Su Xiang, et al.Upper water mass structure evolution in the Weatern Philippine Sea since Mid-Pleistocene: Evidence from the abundace of coccolith species Florisphaera profunda[J].Quaternary Science,2011, 31(2):216-226. |
[52] | [孙晗杰, 李铁刚, 苏翔,等. 中更新世以来西菲律宾海上层水体结构演化特征[J].第四纪研究, 2011,31(2):216-226.] |
[53] | Wagner T.Control of organic carbon accumulation in the late Quaternary equatorial Atlantic (Ocean Drilling Program sites 664 and 663): Productivity versus terrigenous supply[J].Paleoceanography,2000, 15(2): 181-199. |
[54] | He J, Zhao M, Wang P, et al.Changes in phytoplankton productivity and community structure in the northern South China Sea during the past 260ka[J].Palaeogeography, Palaeoclimatology, Palaeoecology,2013, 392: 312-323,doi:10.1016/j.palaeo.2013.09.010. |
[55] | Su X, Liu C, Beaufort L, et al.Late Quaternary coccolith records in the South China Sea and East Asian monsoon dynamics[J].Global and Planetary Change,2013, 111: 88-96,doi:10.1016/j.gloplacha.2013.08.016. |
[56] | Garidel-Thoron T, Beaufort L, Linsley B K, et al.Millennial-scale dynamics of the East Asian winter monsoon during the last 200,000 years[J].Paleoceanography,2001, 16(5): 491-502. |
[57] | Beaufort L, van der Kaars S, Bassinot F C, et al. Past dynamics of the Australian monsoon: Precession, phase and links to the global monsoon concept[J].Climate of the Past,2010, 6(5): 695-706. |
[58] | Reichart G J, Lourens L, Zachariasse W.Temporal variability in the northern Arabian Sea Oxygen Minimum Zone (OMZ) during the last 225,000 years[J].Paleoceanography,1998, 13(6): 607-621. |
[59] | Wu J, Liu Z, Zhou C.Late Quaternary glacial cycle and precessional period of clay mineral assemblages in the Western Pacific Warm Pool[J].Chinese Science Bulletin,2012, 57(28/29): 3 748-3 760. |
[60] | Beaufort L, de Garidel-Thoron T, Linsley B, et al. Biomass burning and oceanic primary production estimates in the Sulu Sea area over the last 380 kyr and the East Asian monsoon dynamics[J].Marine Geology,2003, 201(1): 53-65. |
[61] | Rickaby R, Bard E, Sonzogni C, et al.Coccolith chemistry reveals secular variations in the global ocean carbon cycle?[J].Earth and Planetary Science Letters,2007, 253(1): 83-95. |
[62] | Cortese G, Gersonde R, Hillenbrand C D, et al.Opal sedimentation shifts in the World Ocean over the last 15 Myr[J].Earth and Planetary Science Letters,2004, 224(3): 509-527. |
/
〈 |
|
〉 |