古今结合论碳汇、见微知著识海洋*

  • 焦念志 ,
  • 张传伦 ,
  • 谢树成 ,
  • 刘纪化 ,
  • 张飞
展开
  • 1.近海海洋环境科学国家重点实验室, 厦门大学, 福建 厦门 361102
    2.海洋地质国家重点实验室, 同济大学, 上海 200092
    3.生物地质与环境地质国家重点实验室, 中国地质大学, 湖北武汉 430074

作者简介:焦念志(1962-), 男, 山东人, 中国科学院院士, 主要从事海洋微型生物碳泵、海洋微型生物生理生态、分子生态学以及相关的资源环境效应研究. E-mail: jiao@xmu.eu.cn

网络出版日期: 2014-11-20

基金资助

国家重大科学研究计划项目“海洋微型生物碳泵储碳过程与机制研究”(编号:2013CB955700);“南海深海过程演变”重大研究计划集成项目“南海碳循环与生物学储碳机制集成研究”资助

版权

, 2014,

To Decipher the Ocean Carbon Sink Through Interdisciplinarity and the Integration of the Past and Present

  • Nianzhi Jiao ,
  • Chuanlun Zhang ,
  • Shucheng Xie ,
  • Jihua Liu ,
  • Fei Zhang
Expand
  • 1. State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
    2. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China; .State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan430074, China
    3. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan430074, China

Online published: 2014-11-20

Copyright

地球科学进展 编辑部, 2014, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

摘要

海洋是地球上最大的活跃碳库, 发挥着全球气候变化“缓冲器”的作用, 研究海洋碳循环过程与储碳机制是当前的国际热点。然而, 地球系统的复杂性注定了这个重大命题必须通过学科交叉、古今结合才能取得较全面的认识和新的突破。

本文引用格式

焦念志 , 张传伦 , 谢树成 , 刘纪化 , 张飞 . 古今结合论碳汇、见微知著识海洋*[J]. 地球科学进展, 2014 , 29(11) : 1294 -1297 . DOI: 10.11867/j.issn.1001-8166.2014.11.1294

Abstract

The ocean is the world’s largest active carbon pool and buffers global climate change. Current scientific research focuses on ocean carbon cycling and carbon sequestration mechanisms. The new cognition can be successfully reached only through interdisciplinary and integrative studies of the past and present oceans.

参考文献

[1] Chisholm S W. Oceanography: Stirring times in the southern ocean[J]. Nature, 2000, 407: 685-687.
[2] Jiao N, Herndl G J, Hansell D A, et al.Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8: 593-599.
[3] Wang P, Li Q, Tian J, et al.Long-term cycles in the carbon reservoir of the quaternary ocean: A perspective from the South China Sea[J]. National Science Review, 2014, 1: 119-143.
[4] Jiao N, Robinson C, Azam F, et al.Mechanisms of microbial carbon sequestration in the ocean—Future research directions[J]. Biogeosciences, 2014, 11(6): 5285-5306.
[5] Kuypers M M, Blokker P, Erbacher J, et al.Massive expansion of marine archaea during a mid-cretaceous oceanic anoxic event[J]. Science, 2001, 293: 92-95.
[6] Iverson V, Morris R M, Frazar C D, et al.Untangling genomes from metagenomes: Revealing an uncultured class of marine euryarchaeota[J]. Science, 2012, 335: 587-590.
[7] Xie W, Zhang C, Zhou X, et al.Salinity-dominated change in community structure and ecological function of archaea from the lower pearl river to coastal South China Sea[J]. Applied Microbiology and Biotechnology, 2014, 98(18): 7971-7982.
[8] Wang J, Zhang C, Hong Y. Tendency of TEX86 deficiency in the transitional zone between lower Pearl River estuary and coastal South China Sea: Impact of changing archaeal community structure[J].Chemical Geology, in revision.
[9] Luo G, Junium C K, Kump L R, et al.Shallow stratification prevailed for ~1700 to ~1300 Ma ocean: Evidence from organic carbon isotopes in the north China Craton[J]. Earth and Planetary Science Letters, 2014, 400: 219-232.
[10] Jia C, Huang J, Kershaw S, et al.Microbial response to limited nutrients in shallow water immediately after the end-Permian mass extinction[J]. Geobiology, 2012, 10(1): 60-71.
[11] Xie S, Pancost R D, Wang Y, et al.Cyanobacterial blooms tied to volcanism during the 5 My Permo-Triassic biotic crisis[J]. Geology, 2010, 38(5): 447-450.
文章导航

/