收稿日期: 2013-04-07
修回日期: 2013-04-12
网络出版日期: 2013-05-10
基金资助
国家自然科学基金项目“典型海区基于功能群的浮游植物群落结构及其与颗粒有机碳输出的耦合”(编号:40925018)资助
The Progress of In Situ Observation of Marine Plankton
Received date: 2013-04-07
Revised date: 2013-04-12
Online published: 2013-05-10
陈纪新 , 黄邦钦 , 柳欣 . 海洋浮游生物原位观测技术研究进展[J]. 地球科学进展, 2013 , 28(5) : 572 -576 . DOI: 10.11867/j.issn.1001-8166.2013.05.0572
In situ observation techniques got rapid development in the process of biological oceanography research, from the physiological and ecological response of marine biodiversity, marine biological and ecological processes of macro and change mechanism and so on, which greatly improved the marine biology, ecology and biogeochemical processes of different temporal and spatial scales. Current techniques including in situ optical detection technology, underwater microscopic camera and automatic identification technology, underwater flow cytometry technology, and the biosensor technology based on molecular biology, broaden the study scope of each type of observation platform. This paper will focus on present technology development of in situ observation of the marine plankton, application and their prospect in the threedimensional ocean observation system.
[1]Ruhl H A, Andre M, Beranzoli L, et al. Societal need for improved understanding of climate change, antropogenic impacts, and geo-hazard warning drive development of ocean observatories in European Seas[J]. Progress in Oceanography, 2011, 91(1):1-33.
[2]Paul J, Scholin C, Van Den Engh G, et al. In situ instrumentation[J]. Oceanography,2007, 20(2): 70-78.
[3]Rudnic D L, Perry M J. ALPS: Autonomous and Lagrangian Platforms and Sensors[R]. California: Workshop Report, 2003:64.
[4]Wang Pinxian. Watch the Earth from the bottom of the sea: The third observation platform for Earth system[J]. Journal of Nature, 2007, 29(3):125-130.[汪品先.从海底观察地球:地球系统的第三个观测平台[J].自然杂志,2007,29(3):125-130.]
[5]Demer D A, Soule M A, Hewitt R P. A multiple-frequency method for potentially improving the accuracy and precision of in situ target strength measurements[J].Journal of the Acoustical Society of America, 1999, 105(4):153-165.
[6]De Robertis A. Validation of acoustic echo counting studies of zooplankton behavior”[J]. ICES Journal of Marine Science, 2001,58:38-43.
[7]Jaffe J S, Ohman M D, De Robertis A. Sonar estimates of daytime activity levels of Euphausia pacifica in Saanich Inlet[J]. Canadian Journal of Fisheries & Aquatic Sciences, 1999, 56(11):2 000-2 010.
[8]Lavery A C, Stanton T K, McGehee D E, et al. Three-dimensional modeling of acoustic backscattering from fluid-like zooplankton[J].Journal of the Acoustical Society of America, 2002, 111(3):156-162.
[9]Wiebe P H, Stanton T K, Greene C H, et al. BIOMAPER-II: An integrated instrument platform for coupled biological and physical measurements in coastal and oceanic regimes[J].IEEE Journal of Oceanic Engineering, 2002, 27(3): 256-278.
[10]Holliday D V, Staton T K. Active acoustical assessment of plankton and micronekton[C]∥Medwin H, ed. Sounds in the Sea: From Ocean Acoustics to Acoustical Oceanography. Cambridge, 2005:355-373.
[11]Warren J D, Stanton T K, Benfield M C, et al. “In situ measurements of acoustic target strengths of gas-bearing siphonophores”[J]. ICES Journal of Marine Science,2011,58 (4): 422-432.
[12]Lorenzen C. A method for the continuous measurement of in vivo chlorophyll concentration[J]. Deep-Sea Research, 1966, 13:223-227.
[13]Kolber Z, Falkowski P G. Use of fluorescence to estimate phytoplankton photosynthesis in situ[J]. Limnology, 1993, 38:1 646-1 665.
[14]Volent Z, Johnsen G, Hovland E K, et al. Improved monitoring of phytoplankton bloom dynamics in a Norwegian fjord by integrating satellite data, pigment analysis, and Ferrybox data with a coastal observation network[J].Journal of Applied Remote Sensing,2012, 5(1):530-561.
[15]Boss E, Swifd D, Taylor L, et al. Observations of pigment and particle distributions in the western North Atlantic from an autonomous float and ocean color satellite[J]. Limnology and Oceanography,2008,53: 2 112-2 122.
[16]Ashjian C J, Davis C S, Gallager S M, et al. Distribution of plankton, particles, and hydrographic features across Georges Bank described using the Video Plankton Recorder[J]. Deep-Sea Research II, 2001, 48:1-3.
[17]Chisholm S W, Olson R J, Zettler E R, et al. A novel free-living prochlorophyte abundant in the oceanic euphotic zone[J].Nature,1988, 334:340-343.
[18]Dubelaar G B, Groenewegen A C, Stokdijk W, et al. Optical plankton analyser: A flow cytometer for plankton analysis, II: Specifications[J]. Cytometry,1989, 10:529-539.
[19]Olson R J, Shalapyonok A, Sosik H M. An automated submersible flow cytometer for analyzing pico- and nanophytoplankton: FlowCytobot[J]. Deep-Sea Research Ⅱ, 2003, 50:301-315.
[20]Greenfield D I, Marin III R, Jensen S, et al. Application of the Environmental Sample Processor (ESP) methodology for quantifying Pseudo-nitzschia australis using ribosomal RNA-targeted probes in sandwich and fluorescent in situ hybridization[J]. Limnology and Oceanography: Methods, 2006, 4:426-435.
[21]Scholin C A, Doucette G J, Cembella A D. Prospects for developing automated systems for in situ detection of harmful algae and their toxins[C]∥Babin M, Roesler C S, Cullen J J, eds.Real-Time Coastal Observing Systems for Ecosystem Dynamics and Harmful Algal Blooms. Paris, France:UNESCO Publishing, 2009.
[22]Strickler J R, Hwang J S. Matched spatial filters in long working distance microscopy of phase objects[C]∥Cheng P C, Hwang P P, Wu J L, eds. Focus on Modern Microscopy. World Scientific Publishing Inc., River Edge, New Jersey, 2000:215-232.
[23]Hobson P R, Watson J. The principles and practice of holographic recording of plankton[J].Journal of Optics A: Pure & Applied Optics, 2002,4(4):12-22.
/
〈 |
|
〉 |