干旱气候变化与可持续发展

地球深部物质电学性质实验研究

展开
  • 中国科学院地球化学研究所 贵阳 550002
朱茂旭, 男, 1967 年 9 月出生, 博士研究生, 主要从事地球深部物质科学研究。

收稿日期: 1997-10-10

  修回日期: 1998-03-23

  网络出版日期: 1998-10-01

EXPERIMENTAL RESEARCHES OF ELECTRICAL CHARACTERISTICS ON EARTH'S DEEP-INTERIOR MATERIALS

Expand
  • Institute of Geochemisty, Chinese Academy of Sciences, Guiyang 550002

Received date: 1997-10-10

  Revised date: 1998-03-23

  Online published: 1998-10-01

摘要

地球深部物质电学性质的实验研究是了解地幔热结构和地幔动力学特征的重要手段之一,已越来越受到地球物理学家的重视。介绍了地球深部物质电学性质实验研究的基本原理、基本方法、电导的影响因素、实验研究的意义和今后的研究方向。

本文引用格式

朱茂旭,谢鸿森 . 地球深部物质电学性质实验研究[J]. 地球科学进展, 1998 , 13(5) : 438 -446 . DOI: 10.11867/j.issn.1001-8166.1998.05.0438

Abstract

Experimental researches of electrical characteristics on earth’s deep-interior materials is one of important methods to obtain inform ation about thermal structure profile and dynamical feature of the mantle. More and more attentions of geophysicists have been drawn to this research field. This paper introduces basic principle, methods and significances of experimental researches. Factors affecting electrical conduction of earth’s deep-interior materials and further research items in the future are discussed as well.

参考文献

[1] Li X Y, Jeanloz R. Laboratory studies of the electrical conductivity of silicate perovskites at high pressures and temperatures. J Geophys Res, 1990, 95(B4): 5 067-5 078.
[2] Duba A. Limits to electrical conductivity measurements of silicates. In: W Schreyer ed. High Pressure Researches in Geosciences. Schweizerbart.sche Verlagschandlung Stuttgart, 1982 375-381.
[3] Dobson D P, Richmond N C, Brodholt J B. A high-temperature elect rical conduction mechanism in the lower mantle phase (Mg, Fe)1- x O. Science, 1997, 275(21): 1 779-1 781.
[4] Gautason B, Muehlenbachs K. Oxygen diffusion in perovskite: implication for electrical conductivity in the lower mantle. Science, 1993, 260: 23, 518-521.
[5] Hirsch L M, Shankland T J. Determination of defect equilibria in minerals. J Geophys Res, 1991, 96(B1):377-384.
[6] Hirsch L M. Occurrence of small changes in electrical conduction of olivine arising from high-temperature creep. J Geosphs Res, 1989, 94(B12):17 861-17 870.
[7] Shankland T J, Peyronneau J, Poirier J P. Electrical conductivity of the earth.slower mantle. Nature, 1993, 366: 13-15.
[8] Rahman K M, Schneider S C, Seitz M A. Hopping and ionic conduction in Tin oxid-ebased thick-film resist or compositions. J Am Ceram Soc, 1997, 80(5): 98-202.
[9] Huebner S J, Voigt D E. Electrical conductivity of diopside: evidence for oxygen vacancies. Amer Miner, 1988, 73: 1 235-1 254.
[10] Constable S, Duba A. Electrical conductivity of olivine, a dunite and the mantle. J Geophys Res, 1990, 95(B1): 6 967-6 978.
[11] Schock R N . Electrical conduction in olivine. J Geophys Res, 1989, 94: 5 829-5 839.
[12] Peyronneau J, Poirier J P. Electrical conductivity of the earth. slower mantle. Nature, 1989, 342(30): 537-539.
[13] Hirsch L M. Electrical conduction of Co2SiO4. Phys Chem Minerals, 1990, 17: 187-190.
[14] Wanamaker B J, Duba A G. Electrical conductivity of San Carlos olivine along [100] under oxygen- and pyroxene- buffer conditions and implications for defect equilibria. J Geophys Res, 1993, 98(B1): 489-500.
[15] Bai Q, Wang Z- C, Kohlstedt D L. Manganese olivine I: electrical conductivity. Phys Chem Minerals, 1995, 22: 489-503.
[16] Li X Y, Jeanloz R. High pressure-temperature electrical conductivity of magnesiow ustite as a function of iron oxide concentration. J Geophys Res, 1990, 95(B13): 21 609-21 612.
[17] Wood B J, Nell J. High-temperature electrical conductivity of the lower-mantle phase (Mg, Fe) O. Nature, 1991, 351(23):309-311.
[18] Li X Y, Jeanloz R. Phases and electrical conductivity of a hydrous silicate assemblage at lower-mantle conditions. Nature,1991, 350: 332-334.
[19] Li X Y, Ming L C, M anghnani M - H. Pressure dependence of the electrical conductivity of (Mg0. 1 Fe0. 1) SiO3 perovskit e.J Geophys Res, 1993, 98(B1): 501-508.
[20] Huebner J S, Dillenaurg G D. Impedance spectra of dry silicate minerals and rock: qualitative interpretation of spectra. Am Miner, 1995, 80: 46-64.
[21] Raistrick I D, Ho C, Huggins R A. Ionic conductivity of some lithium silicates and aluminosilicates. J Electrochem Soc,1976, 123: 1 469-1 476.
[22] Roberts J J, Tyburczy J A. Frequency dependent electrical properties of polycryst alline livine compacts. J Geophys Res,1991, 96(B10): 16 205- 16 222.
[23] Robert s J J, Tyburczy J A . Frequency dependent electrical propertiesof dunite as functions of temperature and oxygen fugacity. Phys Chem Minerals, 1993, 19: 545-561.
[24] Roberts J J, Tyburczy J A. Impedance spectroscopy of single and polycrystalline olivine: evidence for grain boundary transport. Phys Chem Minerals, 1993, 20: 19-26.
[25] Bakmann T h, Cemic L. Impedance spectroscopy and defect chemistry of fayalite. Phys Chem Minerals, 1996, 23: 186-192 .
[26] Tyburczy J A, Robert s J J. Low frequency eletrical response of polycryst alline olivine compacts: grain boundary transport. J Geophys Res, 1990, 17(11): 1 985-1 988.
[27] Kern H, Popp T. Thermal dehydration reactions characterised by combined measurements of electrical conductivity snd elastic wave velocities. Earth Planet Sci Lett , 1993, 120: 43-57.
[28] 宋茂双, 谢鸿森, 郑海飞, 等. 1- 5G Pa 压力下蛇纹石脱水反应温度的确定——电导率方法. 科学通报, 1996, 41(5):430-433.
[29] Waff H S. Theoretical consideration of electrical conductivity in a partially molten mantle and implications for geothermometry. J Geophys Res, 1974, 79(26):4 003-4 010.
[30] Watanabe T, Kurita K. The relationship between electrical conductivity and melt fraction in a partially molten system:Arche’s law behavior. Phys Earth Planet Iinter, 1993, 78: 9-17.
[31] Watanabe T, Kurita K . Simultaneous measurements of the compressiona-l wave velocity and the electrical conductivity in a partially molten material. J Phys Earth, 1994, 42: 69- 87.
[32] Li X Y, Mao H-K. Solid carbon at high pressure: Electrical resistivity and phase t ransition. Phys Chem Minerals, 1994, 21:1-5.
[33] Lacam A. Effect of compostion and high pressures on the electrical conductivity of Fe-rich (Mg, Fe)2SiO4 olivines and spinels. Phys Chem Minerals, 1985, 12: 23-28.
[34] Omura K. Change of electrical conductivity of olivine associated with the olivine-sponel transition. Phys Earth Planet Inter, 1991, 65: 292-307.

文章导航

/