收稿日期: 2002-10-18
修回日期: 2003-01-07
网络出版日期: 2003-06-01
基金资助
国家863计划项目“基于SIG框架的数字城市服务系统与示范”(编号:2002AA134030);863-103项目“遥感图像处理平台”(编号:2002AA133030)资助.
STUDY ON ASTER DATA CLASSIFICATION USING SELF-ORGANIZING NEURAL NETWORK METHOD
Received date: 2002-10-18
Revised date: 2003-01-07
Online published: 2003-06-01
马建文 , 李启青 , 哈斯巴干 . ASTER数据的自组织神经网络分类研究[J]. 地球科学进展, 2003 , 18(3) : 345 -350 . DOI: 10.11867/j.issn.1001-8166.2003.03.0345
The assumption of statistical model is not needed for Neural Networks (NN) while most traditional classification method for remote sensing data assumed normal distribution model. More and more NN application cases have been found in remote sensing data classification. In this paper, we proposed a method of Kohonen Self-organizing feature map based on clustering analysis. ASTER data is a new remote sensing data, which includes 3 bands of 15 m resolution and 3 bands of 30m resolution. ASTER data of Beijing have been chosen for our research. The land cover classification result in neural networks method has been shown in this paper after wavelet fusion of data. The classification has 9% of accuracy ratio more than MLH classification.
The idea of neural networks came from the basic structure of functioning of the human brain. In the modern field of science and engineering, the neural networks have strengthened their importance with numerous applications ranging from pattern recognition, fields of classification etc. There are different kinds of the neural networks available depending on the task to be performed. In this study the Kohonen self-organized network is used. There are 6 notes in import layer of the structure of Kohonen self-organized network and ASTER data bands 1,2,3N,5,7,9 corresponding to one note in import layer. Output layer has the structure of 25×25 neural notes. Learning speed α starting value is 0.9, α reduced to 0.001 stopped with net calculation processing. Maximum circulation time is 2 500.
ASTER is the only instrument to fly on the EOS AM-1 plate form that will acquire high-resolution image. The primary goal of the ASTER mission is to obtain high-resolution image data in 15 channels over targeted areas of the Earth's surface, as well as black-and-white stereo images, with a revisit time between 4 and 16 days. Band 1、2 are visible bands, band 3N,3B are near inferred bands, the resolution is 15 m; Band from 4 to 9 are group of short wave inferred bands, theresolution is 30 m; Band from 10~14 are thermal bands, the resolution is 90m. With ASTER's merits earth scientists to address a wide range of globule-change topics. In the paper we introduce Kohonen self-organized network in classification of land cover in Beijing area in 2001 by using ASTER data.
[1] Zhang Xiaocan,Huang Zhicai,Zhao Yuanhong.Remote Sensing Digital Image Processing[M]. Hangzhou:ZheJiang University Press,1997.222-232.[张孝灿,黄智才,赵元洪. 遥感数字图像处理[M]. 杭州: 浙江大学出版社, 1997.222-232.]
[2] Luo Jiancheng,Wang Qinmin,Ma Jianghong,et al. The EM-based maximum likelihood classifier for remotely sensed data[J]. Acta Geodaetica et Cartographica Sinica,2002,31(2):234-239.[骆剑承,王钦敏,马江洪,等.遥感图像最大似然分类方法的EM改进算法[J].测绘学报,2002,31(2):234-239.]
[3] Sun Jiabing, Shu Ning, Guan Zequn. Remote Sensing Theory,Method and Application[M].Beijing: Surveying and Mapping Press, 1997.176-242.[孙家炳,舒宁,关泽群.遥感原理、方法和应用[M]. 北京:测绘出版社,1997.176-242.]
[4] Kohonen T. Self-organizated formation of topologically correct feature maps[J]. Biological Cybernetics, 1982, 43: 59-69.
[5] C Y Ji. Land-use classification of remotely sensed data using kohonen self-organizing feature map neural networks[J]. Photogrammetric Engineering & Remote Sensing, 2000, 66(12): 1 451-1 460.
[6] Cui Jintai. An Introduction to Wavelets[M]. Xi'an: Xi'an Jiaotong University Press, 1995.198-242.[崔锦泰.小波分析导论[M].西安:西安交通大学出版社,1995.198-242.]
[7] Mallat S G. A theory of multiresolution signal decomposition the wavelet representation[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1989,11(7): 674-693.
[8] Jorge Nunez, Xavier Otazu, Octavi Fors, et al. Multiresolution-based image fusion with additive wavelet decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(3):1 204-1 211.
[9] Hasibagan,Ma Jianwen,Li Qiqing,et al.Wavelet high frequency substitution fusion method[J]. Journal of Image and Graphics,2002,7A(10):1 012-1 016.[哈斯巴干,马建文,李启青,等.小波局部高频替代融合方法[J].中国图象图形学报,2002,7A(10):1 012-1 016.]
[10] Kohonen T. The self-organizing map[J]. Proceedings of the IEEE, 1990, 78(9): 1 464-1 480.
[11] Yuan Zengren. Artificial Neural Network and Application[M]. Beijing:Tsinghua University Press,1999.[袁曾任. 人工神经元网络及其应用[M]. 北京: 清华大学出版社,1999.]
[12] Li Deren. Discussion on Earth observation and geographic information system[J]. Advances in Earth Sciences, 2001, 16(5):689-703.[李德仁.对地观测与地理信息系统[J].地球科学进展,2001,16(5):689-703.]
/
〈 |
|
〉 |