收稿日期: 1998-05-18
修回日期: 1998-06-29
网络出版日期: 1998-12-01
基金资助
国家自然科学基金重大项目"中国农业生态系统与全球变化相互作用的机理研究"(项目编号: 39728102) 与中国科学院鹤山丘陵综合试验站开放研究基金资助。
PROGRESSES IN SOIL CARBON CYCLE RESEARCHES
Received date: 1998-05-18
Revised date: 1998-06-29
Online published: 1998-12-01
土壤碳是陆地碳库的主要组成部分,全球土壤有机碳总量达1270 Gt。气候变化影响植物生长、植物碎屑分解速率以及土壤—大气碳通量,这对大气CO2含量有重要影响。土壤有机质模型是研究生态系统尺度土壤碳循环的唯一可用工具,目前已开发出多种。大量研究表明,14C测试是研究土壤有机碳组成及驻留时间的重要手段,土壤有机碳由一系列具不同更新时间的组分构成。土壤粒级组成、矿物特征及土体结构等内在因素制约土壤有机碳存量及状态,对于长时间尺度碳的更新具有重要意义。研究不同气候带土壤有机碳储量及动态变化特征,可为预测未来农、林生态系统变化提供理论依据。
陈庆强,沈承德,易惟熙,彭少麟,李志安 . 土壤碳循环研究进展[J]. 地球科学进展, 1998 , 13(6) : 555 -563 . DOI: 10.11867/j.issn.1001-8166.1998.06.0555
Soil carbon is the main part of terrestrial carbon pool, and the total amount of soil organic carbon is about 1 270 Gt C globally. Climate changes influence plant production and decomposition rate of plant debris in/on soils, which contributes to the alterations of carbon fluxes between soils and the atmosphere, and can make great impacts on concentration of atmospheric CO2. Soil organic matter model is the only practical tool for the carbon cycle researches at ecosystem level, many kinds of which have been developed up to now. A great number of studies suggest that 14C measurement is an important method for the research on constitution of soil organic carbon and residual times of different components, soil organic carbon is composed of a series of components with different residual times. Grain size, mineral composition and soil texture are the main characteristics of soils controlling the amount and occurring states of soil organic carbon, and exert great impacts on the turnover of soil carbon with long residual times. Studies on the amount and dynamics of soil organic carbon could provide valuable theoretical bases for the predictions about alterations of agricultural and forest ecosystems under the influences of global changes.
[1] Hought on J T, Jenkins G J, Ephraums J J. Climate Change. The IPCC Scientific A ssessment. New York: Cambridge University Press, 1990.
[2] Vitousek P M, Mooney H A, Lubchenco J, et al. Human Domination of Earth's Ecosystems. Science, 1997, 277: 494-499.
[3] Houghton J T, Callander B A, Varney S K. Climate Change 1992, The Supplementary Report to the IPCC Scientific Assessment. New York: Cambridge University Press, 1992. 24.
[4] Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric budget. Science, 1990, 247: 1 431-1 438.
[5] Siegenthaler U, Sarmiento J L. Atmospheric carbon dioxide and the Ocean. Nature, 1993, 365: 119-125.
[6] Harrison K , Broecker W. A Strategy for estimating the impact of CO2 fertilization on soil carbon storage. Global Biogeochemical Cycles, 1993, 7(1): 69-80.
[7] Sombroek W G,Nachtergaele F O,Hebel A. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. AMBIO,1993,22:417-425.
[8] Schlesinger W H. Carbon storage in the caliche of arid soils: a case study from Arizona. Soil Science, 1982, 133: 247- 255.
[9] Jenkinson D S, Rayner J H. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci, 1977,125: 298-305.
[10] Scharpenseel H W, Becker-Heidmann P, Neue H U, et al. Bomb-Carbon,14C-dating and 13C-measurement as tracers of organic matter dynamics as well as of morphogenetic and turbation processes. Sci Tot Environ, 1989, 81/82:99-110.
[11] Hard J W, Sundquist E T, Stallard R F, et al. Dynamics of soil carbon during deglaciation of the Laurent ide Ice Sheet. Science,1992,258:1 921-1 924.
[12] Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming. Nature, 1991,351: 304-306.
[13] Lenvit S W, Kimball B A, Paul E A, et al. Isotopic estimation of inputs of carbon to cotton soils under FACE-CO2 enrichment. DOE Research Summary, CDIAC. Oak Ridge, USA, 1992.
[14] Kern J S, Johnson M G. Impact of conservation tillage use on soil and atmospheric carbon in the contiguous United States. EPA/600/3-91/056. Env Res Lab Orvallis, OR, 1991.
[15] Haynes R J, Swift R S, Stephen R C. Influence of mixed cropping rotations (Pasture-arable) on organic matter content, water stable aggregation and clod porosity in a group of soils. Soil & Tillage Research, 1991, 19: 77-87.
[16] Powlson D S. Why evaluate soil organic matter models? In: Powlson D S, Smith P, Smith J U, eds. Evaluation of Soil Organic Matter Models. Berlin, Heidelberg: Springer-Verlag, 1996. 3-11.
[17] Stefen W L, Waiker B H, Ungram J S, et al. Global changes and terrestrial ecosystems, The Operational Plan. IGBP Report 21, International Geosphere-Biosphere Programme. Stockholm, 1992.
[18] McGill W B. Review and classification of ten soil organic matter(SOM) models. In: Powlson D S, Smith P, Smith J U, eds. Evaluation of Soil Organic Matter Models. Berlin, Heidelberg: Springer-Verlag, 1996. 111-132.
[19] Jenny H. Factors of Soil Formation. New York: McGraw-Hill, 1941.
[20] Franko U, Oelschlagel B, Schenk S. Simulation of temperature-, water-, and nitrogen-dynamics using the model CANDY. Ecological modelling, 1995, 81: 213-222.
[21] Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci Soc Am J, 1987, 51: 1 173-1 179.
[22] Harsen S, Jensen H E, Nielsen N E, et al. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model DA ISY. Fer Res, 1991, 27: 245-259.
[23] Li C, Folkring S, Folkring T A. A model of nitrous oxide evolution from soil driven by rainfall events—1: Model structure and sensitivity. J of Geophysical Res, 1992, 97: 9 759- 9 776.
[24] Thornley J H M, Verberne E L J. A model of nitrogen flows in grassland. Plant Cell and Environment, 1989, 12: 863- 886.
[25] Molina J A E, Clapp C E, Shaffer M J, et al. NCSOIL, a model of nitrogen and carbon transformations in soil: Description, calibration, and behavior. Soil Sci Soc Am J, 1983, 47: 85- 91.
[26] Bosatta E, Agren G L. Theoretical analysis of decomposition of heterogeneous substrates. Soil Boil & Biochem, 1985, 16: 63-67.
[27] Jenkinson D S, Hart P B S, Rayner J H, et al. Modelling the turnover of organic matter in long-term experiments. INTECOL Bulletin, 1987, 15: 1-8.
[28] Verberne E. Simulation of nitrogen and water balance in a system of grassland and soil. DLO-Institut voor Bodemvruchtbaarheid, Osterweg 92, Postbus 30003, 9750 R A Haren, Netherlands, 1992. 156, Appendices.
[29] Chertov O G. SPECOM- A single tree model of pine stand/raw humus soil ecosystem. Ecological modelling, 1990, 50: 107- 132.
[30] Parton W J. The century model. In: Powlson D S, Smith P, Smith J U , eds. Evaluation of soil organic matter models. Berlin, Heidelberg: Springer-Verlag, 1996. 283-291.
[31] Parton W J, Scurlock J M O, Ojima D S, et al. Observations and modelling of biomass and soil organic matter dynamics for the grasslands biome world- wide. Global Biogeochemical Cycles, 1993, 7: 785-809.
[32] Prentice K C, Fung I Y. The sensitivity of terrestrial carbon storage to climate change. Nature, 1990, 346: 48- 51.
[33] Torn M S, Trumbore S E, Chadwick O A, et al. Mineral control of soil organic carbon storage and turnover. Nature, 1997, 389:170-173.
[34] Trumbore S E. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles, 1993, 7(2): 275-290.
[35] Stout J D, Goh K M, Rafter T A. Chemistry and turnover of naturally occurring resistant orgaic components in soil. In: Paul E A, Ladd J N eds. Soil Biochem. 1981, 5: 1-73.
[36] Balesolent J. The turnover of soil organic fractions estimated by radiocarbon dating. Sci Total Environ, 1987, 62: 405-408.
[37] Trumbore S E, Vogel J S, Southon J R. AMS 14C measurements of fractionated soil organic matter: an approach to deciphering the soil carbon cycle. Radiocarbon, 1989, 31: 644- 654.
[38] Paul E A, Campbell C A, Rennie D A, et al. Invest igations of the dynamics of soil humus utilizing carbon dating techniques. In: Transactions of the 8th Internat ional Soil Science Society (Bucharest, Romania). Vienna: International Soil Science Society, 1964. 3: 201- 208.
[39] Scharpenseel H W, Schiffmann H, Hintze B. Hamburg University radiocarbon dates III. Radiocarbon, 1984, 26: 196- 205.
[40] Anderson D W, Paul E A. Organomineral complexes and their study by radiocarbon dating. Soil Sci Soc Am J, 1984, 48: 298-301.
[41] Harkness D D, Harrison A F, Bacon P J. The temporal distribution of “bomb” 14C in a forest soil. Radiocarbon, 1986, 28: 328-337.
[42] Anderson D W, saggar S, Bettany J R, et al. Particle-size fractions and their use in studies of soil organic matter—I: The nature and distribution of forms of carbon, nitrogen and sulfur. Soil Sci Soc Am J, 1981, 45: 767- 772.
[43] Balesdent J, Wagner G H, Mariotti A. Soil organic matter turnover in longer term field experiments as revealed by the carbon-13 natural abundance. Soil Sci Soc Am J, 1988, 52: 118- 124.
[44] Kuikman K, Van Elsass J D, Jansen A G, et al. Population dynamics and activity of bacteria in relation to their spatial distribution. Soil Biol Biochem, 1990, 22: 1063-1073.
[45] Arrouays D, Vion I, Kicin J L. Spatial analysis and modelling of topsoil carbon storage in temperate forest humic loamy soils of France. Soil Science, 1995, 159(3): 191- 198.
[46] Schnitzer M, Ripmeester J A, Kodama H. Characterization of the organic matter associated with a soil clay. Soil Sci, 1988, 145:448-454.
[47] Richter D D, Babbar L I, Huston M A, et al. Effect of annual tillage on organic carbon in a fine testure Udalf: the importance of roots dynamics to soil carbon storage. Soil Sci, 1990, 149: 78-83.
[48] Ladd J H, Oades J M, Amato M. Microbial biomass formed from 14C,15N-labelled plant material decomposition in soils in the field. Soil Biol Biochem, 1981, 13: 119-126.
[49] Schimel D S. Carbon and nitrogen turnover in adjacent grassland and cropland ecosystems. Biogeochemistry, 1986, 2: 345-357.
[50] Jackman R H. Accumulation of organic matter in some New Zealand soils under permanent pasture. II: Rates of mineralizat ion of organic matter and the supply of available nutrients. NZJ, Agric Res, 1964, 7: 472- 479.
[51] D ixon J B, Weed S B, eds. Minerals in Soil Environments. Madison: Soil Sci Soc Am, Madison, 1986. 283- 304.
[52] Oades J M. The retention of organic matter in soils. Biogeochemistry, 1994, 5: 35- 70.
[53] Huang P M, Schnitzer M, eds. Interact ions of Soil Minertals with Natural Organics and Microbes.: Soil Sci Soc Am, Madison,1986. 283-304.
[54] Dixon J B, Weed S B, eds. Minerals in Soil Environments. Madison: Soil Sci Soc Am, 1989. 379- 438.
[55] Saggar S, Tate K R, Feltham C W, et al. A carbon turnover in a range of allophanic soils amended with 14C-labelled glucose. Soil Biol Biochem, 1994, 26: 1 263-1 271.
[56] Hudson B D. The soil survey as paradigm-based science. Soil Sci Soc Am J, 1992, 56: 836- 841.
/
〈 |
|
〉 |