收稿日期: 2012-12-11
修回日期: 2013-02-05
网络出版日期: 2013-05-10
基金资助
国家重点基础研究发展计划项目“若干重大地质环境突变的地球生物学过程”(编号:2011CB808805);国家自然科学基金项目“华南埃迪卡拉纪时期海洋的氧化还原与化石记录”(编号:41172029)资助.
Application of Nano Ion Microprobe Insitu Analysis in the Evolution of Earth’s Early Life
Received date: 2012-12-11
Revised date: 2013-02-05
Online published: 2013-05-10
地球早期生命的个体极其微小,又因遭受了漫长地质年代中各种地质作用的破坏,现今保存下来的生命记录往往不完整,很难用常规分析手段对其进行原位分析。而纳米离子探针(NanoSIMS)具有极高的空间分辨率,在使用Cs+一次离子源来获得非金属元素或同位素信息的条件下,其空间分辨率可达到50 nm,能有效地解决在地球早期生命研究中所面临的难题。基于选取的5个实例,介绍了NanoSIMS在寻找地球早期生命中发挥的重要作用。通过NanoSIMS获得的生命元素(C,N,S等)分布图像能够直观地观察到生命元素在待研究区域内的分布情况,在排除了无机成因的前提下,C,N,S等生命元素所呈现出的紧密联系可以用来指示生物成因;而获得的微区原位的C,S等同位素信息能够进一步帮助判断所谓的“生物体”或“生物遗迹构造”等是否是真正的生物或由生物活动造成的。
陈雅丽 , 储雪蕾 , 张兴亮 , 翟明国 . 纳米离子探针分析在地球早期生命研究中的应用[J]. 地球科学进展, 2013 , 28(5) : 588 -596 . DOI: 10.11867/j.issn.1001-8166.2013.05.0588
When life arose on Earth is an unresolved scientific issue, Therefore, it is of great significance to explore the origin of life on Earth and search for possible extraterrestrial life by identifying early life. Morphological or chemical features of life are the most compelling evidence for biogenic in origin. However, morphology is not sufficient to prove biogenicity, as many inorganic processes can result in similar features. In addition, the earliest life on Earth were extremely small and poorly preserved because they went through various geological destructive processes in the long geological time, so it is very difficult to use conventional analytical methods to study those early life in situ. Fortunately, NanoSIMS has very high spatial resolution. And with Cs+ primary ion source that is used to gain nonmetal elements or isotope information, its spatial resolution can promote to 50 nm, which can effectively solve the problems of early life on Earth we are facing. In this paper, five study examples related to early life are presented, which show the great important role NanoSIMS plays in searching for early life.
By using the liferelated element (like C, N, S) distribution images obtained by NanoSIMS, we can directly observe the distribution of the life-related elements (like C, N, S) in the study area. And after excluding the biogenic processes, the close relationship among C, N, S and other elements indicates a biological origin;
at the mean time, C and S isotope data of the obtained micro in situ area can further help to determine whether the socalled “organism” is a true organism or “biological trails” is truly caused by biological activities.
Key words: Early life on Earth; NanoSIMS; Carbon isotope; Sulfur isotope
[1]Wacey D, Kilburn M R, Mcloughlin N, et al. Use of NanoSIMS in the search for early life on Earth: Ambient inclusion trails in a c. 3 400 Ma sandstone[J].Journal of the Geological Society, 2008, 165(1): 43-53.
[2]Wacey D, McLoughlin N, Whitehouse M J, et al. Two coexisting sulfur metabolisms in a ca. 3 400 Ma sandstone[J].Geology, 2010, 38(12): 1 115-1 118.
[3]Wacey D. Stromatolites in the ~3400 Ma Strelley Pool Formation, Western Australia: Examining biogenicity from the macro-to the nano-scale[J].Astrobiology, 2010, 10(4): 381-395.
[4]Rasmussen B, Fletcher I R, Brocks J J, et al. Reassessing the first appearance of eukaryotes and cyanobacteria[J].Nature, 2008, 455(7 216): 1 101-1 104.
[5]Nishizawa M, Maruyama S, Urabe T, et al. Micro-scale (1.5 μm) sulphur isotope analysis of contemporary and early Archean pyrite[J].Rapid Communications in Mass Spectrometry, 2010, 24(10): 1 397-1 404.
[6]Wacey D, Kilburn M R, Saunders M, et al. Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia[J].Nature Geoscience, 2011, 4(10): 698-702.
[7]Rasmussen B, Blake T S, Fletcher I R, et al. Evidence for microbial life in synsedimentary cavities from 2.75 Ga terrestrial environments[J].Geology, 2009, 37(5): 423-426.
[8]McLoughlin N, Wacey D, Kruber C, et al. A combined TEM and NanoSIMS study of endolithic microfossils in altered seafloor basalt[J].Chemical Geology, 2011, 289(1): 154-162.
[9]McLoughlin N, Wilson L, Brasier M. Growth of synthetic stromatolites and wrinkle structures in the absence of microbes—Implications for the early fossil record[J].Geobiology, 2008, 6(2): 95-105.
[10]Kung C C, Hayatsu R, Studier M H, et al. Nitrogen isotope fractionations in the Fischer-Tropsch synthesis and in the Miller-Urey reaction[J].Earth and Planetary Science Letters, 1979, 46(1): 141-146.
[11]Hayatsu R, Studier M H, Matsuoka S, et al. Origin of organic matter in early solar system-VI. Catalytic synthesis of nitriles, nitrogen bases and porphyrin-like pigments[J].Geochimica et Cosmochimica Acta, 1972, 36(5): 555-571.
[12]Kasting J F, Howard M T. Atmospheric composition and climate on the early Earth[J].Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1 474): 1 733-1 742.
[13]Robert F, Selo S, Hillion F, et al. NanoSIMS images of Precambrian fossil cells[C]∥36th Annual Lunar and Planetary Science Conference. Texas:League City, 2005.
[14]Kilburn M R, Wacey D. Elemental and isotopic analysis by NanoSIMS: Insights for the study of stromatolites and early life on Earth[M]∥Stromatolites: Interaction of Microbes with Sediments. Netherlands:Springer,2011,118: 463-493.
[15]Shen Y, Buick R, Canfield D E. Isotopic evidence for microbial sulphate reduction in the early Archaean era[J].Nature, 2001, 410(6 824): 77-81.
[16]Shen Y, Farquhar J, Masterson A, et al. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics[J].Earth and Planetary Science Letters, 2009, 279(3): 383-391.
[17]Ueno Y, Ono S, Rumble D, et al. Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: New evidence for microbial sulfate reduction in the early Archean[J].Geochimica et Cosmochimica Acta, 2008, 72(23): 5 675-5 691.
[18]Philippot P, Van Zuilen M, Lepot K, et al. Early Archaean microorganisms preferred elemental sulfur, not sulfate[J].Science, 2007, 317(5 844): 1 534-1 537.
[19]Canfield D E, Teske A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies[J].Nature, 1996, 382(6 587): 127.
[20]Habicht K S, Canfield D E. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments[J].Geochimica et Cosmochimica Acta, 1997, 61(24): 5 351-5 361.
[21]Canfield D E, Thamdrup B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J].Science, 1994, 266: 1 973.
[22]Schidlowski M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: Evolution of a concept[J].Precambrian Research, 2001, 106(1): 117-134.
[23]Farquhar J, Bao H, Thiemens M. Atmospheric influence of Earth’s earliest sulfur cycle[J].Science, 2000, 289(5 480): 756.
[24]Farquhar J, Savarino J, Airieau S, et al. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere[J].Journal of Geophysical Research, 2001, 106(E12): 32 829-32 839.
[25]Pavlov A A, Kasting J F. Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere[J].Astrobiology, 2002, 2(1): 27-41.
[26]Johnston D T, Wing B A, Farquhar J, et al. Active microbial sulfur disproportionation in the Mesoproterozoic[J].Science, 2005, 310(5 753): 1 477-1 479.
[JP2][27]Wacey D, Saunders M, Brasier M D, et al. Earliest microbially mediated pyrite oxidation in ~3.4 billion-year-old sediments[J].Earth and Planetary Science Letters,2011,301(1):393-402.[ZK)][JP]
[28]Brocks J J, Logan G A, Buick R, et al. Archean molecular fossils and the early rise of eukaryotes[J].Science, 1999, 285(5 430): 1 033-1 036.
[29]Brocks J J, Buick R, Summons R E, et al. A reconstruction of Archean biological diversity based on molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Hamersley Basin, Western Australia[J].Geochimica et Cosmochimica Acta, 2003, 67(22): 4 321-4 335.
[30]Hofmann H. Precambrian microflora, Belcher Islands, Canada: Significance and systematics[J].Journal of Paleontology, 1976: 1 040-1 073.
[31]Javaux E J, Knoll A H, Walter M R. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans[J].Geobiology, 2004, 2(3): 121-132.
[32]Schopf J W. Fossil evidence of Archaean life[J].Philosophical Transactions of the Royal Society B: Biological Sciences, 2006, 361(1 470): 869-885.
[33]Horodyski R J, Knauth L P. Life on land in the precambrian[J].Science, 1994, 263(5 146): 494.
[34]Tyler S A, Barghoorn E S. Ambient pyrite grains in Precambrian cherts[J].American Journal of Science, 1963, 261(5): 424-432.
[35]Knoll A H, Barghoorn E S. Ambient pyrite in Precambrian chert: New evidence and a theory[J].Proceedings of the National Academy of Sciences, 1974, 71(6): 2 329-2 331.
[36]Kilburn M R, Wacey D. NanoSIMS analysis of Archean fossils and biomarkers[J].Applied Surface Science, 2008, 255(4): 1 465-1 467.
/
〈 |
|
〉 |