学科发展与研究

流域地貌的分形研究

展开
  • 1.兰州大学地理系,730000;2.四川大学物理系,610064

收稿日期: 1993-01-11

  修回日期: 1993-02-26

  网络出版日期: 1993-09-01

基金资助

国家自然科学基金资助项目“地貌系统演化的非线性动力学研究”(批准号 49271000)预研成果

THE FRACTAL STUDY OF THE DRAINAGE GEOMORPHOLOGY

Expand
  • 1.Geography Department of Lanzhou University. Lanzhou 730000;2.Physics Department of Sichuan University, Chengdu 610064

Received date: 1993-01-11

  Revised date: 1993-02-26

  Online published: 1993-09-01

摘要

非线性科学中的分形理论已广泛应用于各个学科。在地貌学研究中,数学—物理方法首先被引入到流域地貌的形成、演化的研究中。分形理论的运用则突破了传统方法的局限,开辟了一条新思路。尽管其运用在流域地貌中才刚刚开始,但人们已感觉到它强大的生命力。本文分析了流域地貌的分形特征,着重介绍了目前国内外已建的各种模型及其最新进展。

本文引用格式

高鹏;李后强;艾南山 . 流域地貌的分形研究[J]. 地球科学进展, 1993 , 8(5) : 63 -70 . DOI: 10.11867/j.issn.1001-8166.1993.05.0063

Abstract

The fractal theory, which is one of the nonlinar sciences, has been applied to many kinds of fields. In the field of Geomorphology , mathematical methods are first poured into drainage geomorphology for the study of its forming and evolving. The utilization of fractal theory ,however ,breaks up the limit of these traditional means and creats a new way. Although.it is a beginning to apply it in the drainage geomorphology, its strong vitality has been displayed. This article analyses the fractal characters of the drainage geomorphology and intensingly introduces all kinds of fractal models in the drainage geomorphology all over the world and its latest development.

参考文献

[1]A N Strahler.Quantitative/dynamic geomorphology at columbia 1945-60.Progress in Physical Geography, 1992,16, 65-84
[2]魏洪森,宋永华等.开创复杂性研究的新学科:系统科学纵览.四川教育出版社,1991
[3]高安秀树(日).分数维.地震出版社,1989
[4]Jurgens等.分形语言.科学,1990,(12).
[5]李后强等.分形与分维.四川教育出版社,1990
[6]董连科.分形理论及应用.辽宁科学技术出版社,1991
[7]北京大学等.地貌学.人民教育出版社,1978
[8]R E Horton. Erosional Development of Srteams and Their Drainage Basins:Hydrophysical Approach to Quantitative Morphology .Bul1 Geol Soc Am, 1945, 56 :275-370 .
[9]A E Scheidegger.Theoritical gemphlology.Verlag-Springer,1961
[10]C T Yang,C C Sang.Theory of Minimum Rate of Energy Dissipation.Journal of the Hydraulics Division, 1979, 105(7):769-784
[11]黄万里. 连续介体动力学最大能量消散率定律[J]. 清华大学学报(自然科学版), 1981,21(1) .
[12]Gu H,Chen S,Qian X,Ai N,Zan T.River-geomorphologic processes and dissipation structure.in "Inter Geomorph,1986 part II":211-224 John Wiley & Sons Ltd,1987
[13]艾南山. 侵蚀流域系统的信息熵[J]. 水土保持学报, 1987,1(2) .
[14]艾南山,岳天祥. 再论流域系统的信息熵[J]. 水土保持学报, 1988,(4) .
[15]岳天祥,艾南山,张英保. 论流域系统稳定性的判别指标——超熵[J]. 水土保持学报, 1989,(2)
[16]Koreak J.Deux types fondamentaux de distribution statistique.Bulletin de l'Institut,1940,30:295-299
[17]M F Goodchild. Lakes on Fractal Surface:A Null Hypothesis for Lake--Rich Landscqpes .Mathematical Geology, 1988, 20(6) :615-630
[18]R L Curl. Fractal Dimensions and Geometries of Caves .Mathematical Geology, 1986, 18(8) :765-768
[19]牛文元.自然资源开发原理.河南大学出版社,1989
[20]龙期威.材料物理中的分形.The spring college on fractal aspects of materials,April 16-29,1989
[21]Benoit Mandelbrot.How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension.Science,1967,155:636-638
[22]H Steinhaus.Mathematical Snapshots.London,Ocford University Press,1960
[23]Richardon L F.The problem of contiguity.Geoeral Systems Yearbook,1961,6:139-187
[24]Vijay K. Gupta.Statistical self-similarity in river networks parameterized by elevation.Water Resources Research, 1989,25:463-476
[25]Shreve Ronald L.Infinite Topologically Random Channel Networks.The Journal of Geology, 1967,75:178-186
[26]Snow, R. Scott.Fractal sinuosity of stream channels.Pure and Applied Geophysics PAGEOPH, 1989,131(1-2):99-109
[27]J. T. Hack.Studies of longitudinal profiles in Virginia and Maryland. U.S. Geological Survey Professional Paper, 1957,294-B:45- 97
[28] B. Mandelbrot.The Fractal Geometry of Nature.Freeman,1982
[29]A T Hjelmfelt. Fractals and the River--Length Catchment Area ratio .Water Resources Bulletin, 1988, 24(2) :455-459
[30]G.E.McDermott,D.H.Pilgrim.Design flood estimation for small catchments in New South Wales.Australian Water Resources Council,Australian Government Publishing Service cat. no. 8218579.
[31]A Robert and A G Roy. On the Fractal Interpretation of the Main--Stream Length--Drainage Area Relationship .Water Resources Research, 1990, 26(9) :839-842
[32]承继成,江美球.流域地貌学模型.科学出版社,1986
[33]J Feder.Fractals.New York and London,1988
[34]P L Barbera and R Rosso. On the Fractal Dimension of Stream Networks .Water Resource Research, 1989, 25(4) :735-741 .
[35]洪时中,洪时明. 地学领域中的分维研究水系、地震及其它[J]. 大自然探索, 1988,(2) .
[36]Juan M. García-Ruiz and Fermín Otálora.Fractal trees and Horton's laws.Mathematical Geology,1992,24(1)
[37]Michael F Barnsley.Fractals Everywhere.Academic press boston,1988:394
[38]D G Tarboton,R L Bras and I R Iturbe. The Fractal Nature of River Networks .Water Resources Research, 1988, 24(8) :1317-1322
[39]L E Band. Topographic partition of watersheds with digital elevation models .Water Resour Res, 1986, 22(1) :15-24
[40]David G. Tarboton, Rafael L. Bras, Ignacio Rodriguez-Iturbe.Comment on “On the fractal dimension of stream networks” by. P. La Barbera and R. Rosso, Water Resour. Res., 1996,26, 2243-2244.
[41]P L Barbera and R Rosso.Reply.Water resources research,1990,26(9):2245-2248
[42]R Rosso,B Bacchi and P L Barbera. Fractal Relation of Mainstream Length to Catchment Area in River Networks .Water Resources Research, 1991, 27(3) :381-387 .
[43]V I Nikora. Fractal Structures of River Plan Forms .Water Resources Research, 1991, 27(6) :1327-1333
[44]李后强,艾南山. 分形地貌学及地貌发育的分形模型[J]. 自然杂志, 1992,15(7):516-519.
[45]A Robert. Statistical Properties of Sediment Bed Frofiles in Alluvial Channels .Mathematical Geology, 1988, 20(3) :205-225
[46]A Robert. Fractal Properties of Simulated Bed Profiles in Coarse--Grained Channels .Mathematical Geology, 1991, 23(3) :367-382
[47]Georges Matheron.Les variables régionalisées et leur estimation.Pairs,1965:305
[48]C P Stark. An invasion percolation model of drainage network evolution .Nature, 1991, 352 :423-425
[49]L E Gilbert.Are topographic data sets fractal?Pure and Applied Geophysics,1989,131(1-2)

文章导航

/