综述与评述

非线性时间序列分析的最新进展及其在地球科学中的应用前景

展开
  • 成都市地震局,四川 成都 610015
洪时中,男,1943年8月出生于安徽安庆,高级工程师,主要从事非线性科学在地震科学中应用的研究。

收稿日期: 1999-03-19

  修回日期: 1999-06-07

  网络出版日期: 1999-12-01

基金资助

国家自然科学基金项目“地震预测的非线性时间序列方法研究”(编号:49474209)资助。

NONLINEAR TIME SERIES ANALYSIS AND ITS APPLICATIONS TO GEOSCIENCE

Expand
  • Seismological Bureau of Chengdu,Chengdu 610015,China

Received date: 1999-03-19

  Revised date: 1999-06-07

  Online published: 1999-12-01

摘要

评述了非线性时间序列分析的最新进展,包括相空间重构、序列性质的鉴别、建模与预报,同时介绍了非线性时间序列分析在地球科学中的应用概况。

本文引用格式

洪时中 . 非线性时间序列分析的最新进展及其在地球科学中的应用前景[J]. 地球科学进展, 1999 , 14(6) : 559 -565 . DOI: 10.11867/j.issn.1001-8166.1999.06.0559

Abstract

Recent developments in nonlinear time series analysis are reviewed,including phase space reconstruction,estimating embedding dimension and time delay,distinguishing chaos from noise,modeling and prediction of nonlinear time series.Applications of nonlinear time series analysis for geoscience are also
commented.

参考文献

〔1〕Paciard N H,Grutchfield J P,Farmer J D,et al.Geometry from a time series〔J〕.Phys Rev Lett,1980,45(9):712~716.
〔2〕Takens F.Detecting strange attractors in turbulence〔J〕.Lecture Notes in Mathematics,1981,898:336.
〔3〕Grassberger P Procaccia. Measuring the strangeness of strange attractors〔J〕.Physica D,1983,9:189~208.
〔4〕Wolf A,Swift J B,Swinney H L,et al. Determing Lyapunov exponents from a time series〔J〕.Physica D,1985,16:285~317.
〔5〕Farmer J D, Sidorowich J J.Predicting chaotic time series〔J〕.Phys Rev Lett,1987,59(8):845~848.
〔6〕Casdagli M. Nonlinear prediction of chaotic time series〔J〕.Physica D,1989,35:335~356.
〔7〕Sauer T,Yorke J A, Casdagli M.Embedology〔J〕.Journal of Statistical Physics,1991,65(3~4):579~616.
〔8〕Weigend A S. Paradigm change in prediction〔A〕.In:Tong H,ed.Chaos and Forecasting〔C〕. Singapore: World Scientific,1995.145~160.
〔9〕Tong H. Nonlinear Time Series: A Dynamical System Approach〔M〕.Oxford:Oxford University Press,1990.
〔10〕Tong H.Some comments on a bridge between nonlinear dynamicits and statisticans〔J〕.Physica D,1992,58:299~303.
〔11〕Grassbeger P,Schreiber T, Schaffrath C.Nonlinear time sequence analysis〔J〕. International Journal of Bifurcation and Chaos,1991,1(3):521~547.
〔12〕Tong H.Dimension Estimation and Models (Nonlinear Time Series and Chaos Vol1)〔C〕. Singapore: World Scientific,1993.
〔13〕Tong H.Chaos and Forecasting (Nonlinear Time Series and Chaos Vol2)〔C〕.Singapore:World Scientific ,1995.
〔14〕Abarbanel H D I,Brown R,Sidorowich J J,et al.The Analysis of observed chaotic data in physical systems〔J〕.Rev Mod Phys,1993,65(4):1 331~1 392.
〔15〕Casdagli M,Tardins D D,Eubank S,et al.Nonlinear modeling of chaotic time series:theory and applications〔C〕.LA-UR-91-1637,1991.
〔16〕Hao Bailin.Elementary Symbolic Dynamics,and Chaos in Dissipative Systems〔M〕.Singapore:World Scientific,1989.
〔17〕Schroer C G,Sauer T,Ott E,et al.Predicting chaos most of the time from embeddings with self-intersections〔J〕.Phys Rev Lett,1998,80(7):1 410~1 413.
〔18〕Broomhead D S, King G P. Extracting qualitative dynamics from experimental data〔J〕.Physica D,1986,20:217~336.
〔19〕Kennel M B,Brown R, Abarbanel H D I.Determing embedding dimension for phase-space reconstruction using a geometrical construction〔J〕.Phys Rev A,1992,45(6):3 403~3411.
〔20〕Cao Liangyue.Practical method for determining the minimum embedding dimension of a scalar time series〔J〕.Physica D,1997,110:43~50.
〔21〕Sugihara G, May R M.Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series〔J〕.Nature,1990,344:734~741.
〔22〕Kaplan D T, Glass L.Direct test for determinism in a time series〔J〕.Phys Rev Lett,1992.68(4):427~430.
〔23〕Rosenstein M T,Collins J J, De Luca C J.Reconstruction expansion as a geometry-based framework for choosing proper delay times〔J〕.Physica D,1994,73:82~98.
〔24〕Fraser A M, Swinney H L. Independent coordinates for strange attractors from mutual information〔J〕.Phys Rev A,1986,33(2):1 134~1 140.
〔25〕Wayland R,Bromley D,Pickett D,et al.Recognizing determinism in a time series〔J〕.Phys Rev Lett,1993,70(5):580~582.
〔26〕Martinerie J M,Albano A M,Mees A I,et al.Mutual information,strange attractors,and the optimal estimation of dimension〔J〕.Phys Rev A,1992,45(10):7 058~7 064.
〔27〕Kugiumtzis D.State space reconstruction parameters in the analysis of chaotic time series—the role of the time window length〔J〕.Physica D,1996,95:13~28.
〔28〕Gibson J F,Farmer J D,Casdagli M,et al.An analytic approcah to practical state space reconstuction〔J〕,Physica D,1992,57:1~30.
〔29〕洪时中,赵永龙,袁坚.非线性时间序列分析中几个具体问题的初步研究——以太阳黑子序列为例〔A〕.中国地球物理学会年刊(1997)〔C〕.上海:同济大学出版社,1997.
〔30〕Lao Yingcheng, Lerner D.Effective scaling regime for computing the correlation dimension from chaotic time series〔J〕.Physica D,1998,115:1~18.
〔31〕郝柏林.分岔、混沌、奇怪吸引子、湍流及其它——关于确定论系统中的内在随机性〔J〕.物理学进展,1983,3(3):329~416.
〔32〕Theiler J,Eubank S,Longtin A,et al.Testing for nonlinearity in time series:the method of surrogate data〔J〕.Physica D,1992,58:77~94.
〔33〕Osborne A R, Rrovenzale A.Finite corrlation dimension for stochastic systems with power-1aw spectra〔J〕.Physica D,1989,35:357~381.
〔34〕Tanaka T,Aihara K, Taki M.Analysis of positive Lyapunov exponents from random time series〔J〕.Physica D,1998,111:42~50.
〔35〕袁坚,肖先赐.非线性时间序列的高阶奇异谱分析〔J〕.物理学报,1998,47(6):897~905.
〔36〕Schittenkopf C, Deco G. Testing nonlinear Markovian hypotheses in dynamical systems〔J〕.Physica D,1997,104:61~74.
〔37〕Weigend A S, Gershenfeld A.Time Series Prediction:Forecasting the Future and Understanding the Past〔A〕.Proceeding Santa Fe Institute Studies in the Sciences of Complexity (Vol XV)〔C〕.Reading:Addison-Welsley,1994.

 

文章导航

/