收稿日期: 2010-12-06
修回日期: 2011-02-19
网络出版日期: 2011-04-10
基金资助
国家自然科学基金面上项目“矿物脱水与地震孕育的关系”(编号:40873049)资助.
Advances in Studying the Composition of the Earth′s Core
Received date: 2010-12-06
Revised date: 2011-02-19
Online published: 2011-04-10
系统介绍了地核的形成时间、地核的物理特性、化学成分和物质存在相态。利用W-Hf同位素系测年方法厘定地核与地幔分异的年龄是在地球形成的最初30 Ma。但是,内核的结晶年龄还是未知的。地核声波速度的各向异性可能是六面体紧密堆积(hcp)相铁的c轴方向沿地球轴线优选定向排列引起的。利用地球物理资料估算的地核密度与响应温压条件下液态铁的密度差值是5%~10%,因此,判断主要是铁镍合金的地核应该含有一定量的比铁轻的元素,如碳、硫、磷、硅、氧、氢以及其他轻元素。这些轻元素对D″的形成、地幔柱的形成、演化以及地震、火山活动的影响应该是值得探索的新领域。
张友联, 杜建国,崔月菊 . 地核物质成分研究进展[J]. 地球科学进展, 2011 , 26(4) : 365 -374 . DOI: 10.11867/j.issn.1001-8166.2011.04.0365
The age, physical properties and chemical compositions of the Earth’s core are reviewed. The formation time of the core and mantle is determined by W-Hf isotope dating to be 30 Ma at the beginning of the earth formation. However, the time of the inner core crystallization from the liquid core remains an open question. The inner core is anisotropic in elastic wave velocity, which is considered as a result of the c axis of hcp-structure iron arranged predominantly along the Earth′s pole axis. The density difference of the core between the PREM model and liquid iron at the core temperature and pressure is about 10%, which indicates that the core contains light elements, such as C, S, P, Si, O, H, Mg, etc. The light elements in the core may play an important role in the formation of D″ layer between the core and mantle, formation and evolution of the plume and activities of volcano and earthquake, which is the new field for us to investigate.
Key words: The core; Density; Chemical composition; Phase; Anisotropy.
[1]Dziewonski A M,Anderson D L.Preliminary reference Earth model[J].Physics of Earth and Planetary Interior,1981,25: 297-356.
[2]Jeanloz R.The nature of the Earth′s core[J].Annual Review of Earth and Planetary Science,1990, 18: 357-386.
[3]Hillgren V,Gessmann C K,Li J. An experimental perspective on the light element in Earth′s core[M]∥Canup R M, Righter K, eds. Origin of the Earth and Moon.Tuson,AZ: University of Arizona Press,2000:245-263.
[4]Li J, Fei Y. Experimental constraints on core composition[J].Treatise on Geochemistry,2007,2(14):1-31.
[5]McDonough W F.Compositional model for the Earth′s core[J].Treatise on Geochemistry,2007,6:547-568.
[6]Du Jiaqnguo, He Duanwei, Gao Chunxiao,et al. Experimental and Theoretical Studies of Mineral and Rock at High Pressure and Temperature[M].Beijing: Seismological Press,2011(in press).[杜建国,贺端伟,高春晓,等.矿物岩石高温高压实验与理论研究
[M].北京:地震出版社,2011(待刊).]
[7]Ma Y,Somayazulu M,Shen G,et al.In situ X-ray diffraction studies of iron to Earth core conditions[J].Physics of Earth and Planetary Interior,2004,(143/144): 455-467.
[8]Brown J M, McQueen R G.Phase transitions,Grüneisen parameter,and elasticity for hocked iron between 77 GPa and 400 GPa[J].Journal of Geophysical Research,1986,91:7 485-7 494.
[9]Halliday A N,Rehkmper M,Lee D C,et al.Early evolution of the Earth and Moon: New constraints from Hf-W isotope geochemistry[J]. Earth and Planetary Science Letter,1996,142:75-89.
[10]Quitté G, Birck J L, Allégre C J.182Hf-182W systematics in eucrites: The puzzle of iron segregation in the early solar system[J]. Earth and Planetary Science Letter,2000,184:83-94.
[11]Yin Q, Jacobsen S B, Yamashita K,et al. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites[J].Nature,2002,418:949-952.
[12]Kleine T, Münker C, Mezger K,et al. Rapid accretion and early core formation on asteroid and the terrestrial planets from Hf-W chronometry[J].Nature,2002,418:952-956.[13]Akimoto S. Highpressure research in geophysics: Past,present,and future[M]∥Manghnani M H, Syono Y,eds. High Pressure Research in Mineral Physics. Tokyo: Terra Scientific Publishing Company,1987:1-13.
[14]Mao H K, Bell P M, Hadidiacos C. Experimental phase relations of iron to 360 Kbar,1 400 ℃, determined in an internally heated diamond-anvil apparatus[M]∥Manghnani M H, Syono Y, eds. HighPressure Research in Mineral Physics. Washington DC: Terra Scientific Publishing Company, 1987:135-138.
[15]Funamori N, Yagi T, Uchida T. Highpressure and hightemperature in situ X-ray diffraction study of iron to above 30 GPa using MA8type apparatus[J].Geophysical Research Letter,1996, 23: 953-956.
[16]Uchida T, Wang Y, Rivers M L,et al. Stability field and thermal equation of state of epsiloniron determined by synchrotron X-ray diffraction in a multianvil apparatus[J].Journal of Geophysical Research,2001, 106: 21 799-21 810.
[17]Brown J M. The equation of state of iron to 450 GPa: Another high pressure solid phase? [J]. Geophysical Research Letter,2001,28:4 339-4 342.
[18]Andrault D, Fiquet G, Charpin T,et al. Structure analysis and stability field of betairon at high P and T[J].American Mineralogist,2000,85: 364-371.
[19]Saxena S K,Shen G,Lazor P.Experimental evidence for a new iron phase and implications for Earth′s core[J].Science,1993, 260: 1 312-1 314.
[20]Hemley R J, Mao H K. In situ studies of iron under pressure: New windows on the Earth′s core[J].International Geology Review,2001,43: 1-30.
[21]Williams Q, Jeanloz R, Bass J, et al. The melting curve of iron to 250 gigapascals: A constraint on the temperature at Earth′s center[J].Science,1987,236: 181-182.
[22]Saxena S K, Shen G, Lazor P. Temperatures in the Earth′s core based on melting and phase transformation experiments on iron[J].Science,1994, 264: 405-407.
[23]Yoo C S, Holmes N C, Ross M, et al.Shock temperatures and melting of iron at Earth core conditions[J].Physical Review Letter,1993,70: 3 931-3 934.
[24]Boehler R.Temperatures in the Earth′s core from meltingpoint measurements of iron at high static pressures[J].Nature,1993,363:534-536.
[25]Ahrens T J, Holland K G, Chen G Q. Phase diagram of iron, revised core temperatures[J]. Geophysical Research Letter,2002,29(7): 1 150, doi:10.1029/2001GL014350.[26]Boehler R. Highpressure experiments and the phase diagram of lower mantle and core materials[J].Review Geophysics,2000,38:221-245.
[27]Shen G, Mao HK, Hemley R J,et al. Melting and crystal structure of iron at high pressures and temperatures[J].Geophysical Research Letter, 1998,25:373-376.
[28]Mao H K, Wu Y, Chen L C,et al.Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: Implications for compositions of the core[J].Journal of Geophysical Research,1990, 95: 21 737-21 742.
[29]Tateno S, Hirose K, Ohishi Y,et al. The structure of iron in Earth′s inner core[J].Science, 2010, 330(359): 360-362.
[30]Vocadlo L, Alfè D, Gillan M J, et al. Possible thermal and chemical stabilisation of body-centred-cubic iron in the Earth′s core[J].Nature,2003, 424: 536-539.
[31]Vocadlo L, Wood I G, Gillan M J,et al. The stability of bcc Fe at high pressures and temperatures with respect to tetragonal strain[J].Physics of Earth and Planetary Interior,2008,170:52-59.
[32]Belonoshko A B, Ahuja R, Johansson B. Stability of the body centredcubic phase of iron in the Earth′s inner core[J].Nature,2003, 424: 1 032-1 034.
[33]Sanloup C, Guyot F, Gillet P,et al. Structural changes in liquid Fe at high pressures and high temperatures from synchrotron X-ray Diffraction[J].Europhysics Letter,2000, 52(2): 151-157.
[34]Lin J, Heinz D L, Campbell A J, et al. Iron nickel alloy in the Earth′s core[J]. Geophysical Research Letter,2002, 29(10):109-111.
[35]Mitra S. HighPressure Geochemistry and Mineral Physics[M]. Amstterdan, Boston, Lodon, New York, Oxford, Paris: Elservier,2004.
[36]Dubrovinsky L,Dubrovinskaia N, Narygina O,et al. Bodycentred cubic ironickel alloy in Earth′s core[J].Science,2007, 316: 1 880-1 883.
[37]Benz M G, Elliott J F. The austenite solidus and revised iron carbon diagram[J]. Transaction AIME,1961, 221:323-331.
[38]Wood B J. Carbon in the core[J].Earth Earth and Planetary Science Letter,1993,117:593-607.
[39]Dasgupta R,Walker D. Carbon solubility in core melts in a shallow magma ocean environment and distribution of carbon between the Earth′s core and the mantle[J].Geochimca et Cosmochimca Acta,2008,72: 4 627-4 641.
[40]Nakajima Y,Takahashi E,Suzuki T,et al. "Carbon in the core" revisited[J].Physics of Earth and Planetary Interior,2009, 174: 202-211.
[41]Georg R B,Halliday A N,Schauble E A,et al. Silicon in the Earth′s core[J].Nature,2007,447:1102-1 106.
[42]Fitoussi C,Bourdon B,Kleine T,et al.Si isotope systematics of meteorites and terrestrial peridotites: Implications for Mg/Si fractionation in the solar nebula and for Si in the Earth′s core[J].Earth and Planetary Science Letter, 2009,287:77-85.
[43]Shahar A,Ziegler K,Young E D,et al. Experimentally determined Si isotope fractionation between silicate and Fe metal and implications for Earth′s core formation[J].Earth and Planetary Science Letter,2009, 288:228-234.
[44]Gessmann C K, Wood B J, Rubie D C,et al. Solubility of silicon in liquid metal at high pressure: Implications for the composition of the Earth′s core[J].Earth and Planetary Science Letter,2001, 184: 367-376.
[45]Cté A, Vocadlo L, Dobson D P,et al. Ab initio lattice dynamics calculations on the combined effect of temperature and silicon on the stability of different iron phases in the Earth′s inner core[J].Physics of Earth and Planetary Interior,2010,178: 2-7.
[46]Tsuchiya T, Fujibuchi M. Effects of Si on the elastic property of Fe at Earth′s inner core pressures: First principles study
[J].Physics of Earth and Planetary Interior, 2009, 174: 212-219.
[47]O′Neill H S, Canil D, Rubie D C. Oxide metal equilibria to 2 500degrees C and 25 GPa: Implications for core formation and the light component in the Earth′s core[J].Journal of Geophysical Research,1998, 103(B6): 12 239-12 260.
[48]Alf D, Gillan M J, Price G D. Composition and temperature of the Earth′s core constrained by combining ab initio calculations and seismic data[J].Earth and Planetary Science Letter,2002,195: 91-98.
[49]Alfè D, Price G D, Gillan M J. Oxygen in the Earth’s core: A first principles study[J]. Physics of Earth and Planetary Interior,1999,110: 191-210.
[50]Corgne A,Keshav S,Fei Y,et al. How much potassium is in the Earth′s core? New insights from partitioning experiment[J].Earth and Planetary Science Letter,2007,256: 567-576.
[51]McDonough W F, Sun S S. The composition of the Earth[J].Chemical Geology,1995,120:223-253.
[52]Kádas K, Vitos L, Ahuja R. Elastic properties of iron rich hcp Fe Mg alloys up to Earth′s core pressures[J]. Earth and Planetary Science Letter,2008, 271: 221-225.
[53]Okuchi T. The melting temperature of iron hydride at high pressure and its implication of Eath′s core[J].Journal of Geophysical Research,1998, 96:14 313-14 318.
[54]Parker L J, Hasegawa M, Atou T,et al. Highpressure synthesis of alkali metal transition metal compounds[J].Europian Journal of Solid State Inorganic Chemistry,1997,34:693-704.
[55]Lee K K M, Jeanloz R. Highpressure alloying of potassium and iron: Radioactivity in the Earth′s core? [J].Geophysical Research Letter,2003, 30(23), doi:10.1029/2003GL018515.
[56]Murthy R, van Westrenen W, Fei Y. Experimental evidence that potassium is a substantial radioactive heat source in planetary cores[J].Nature,2003,423: 163-165.
[57]Corgne A, Siebert J, Badro J. Oxygen as a light element: A solution to single stage core formation[J].Earth and Planetary Science Letter,2009, 288: 108-114.
[58]Gessmann C K, Wood B J. Potassium in the Earth′s core? [J].Earth and Planetary Science Letter,2002, 200: 63-78.
[59]Herndon J M. Substructure of the inner core of the Earth[J].The Proceedings of the National Academy of Science USA,1996, 93(2):646-648.
[60]Rudnick R L, Barth M, Horn I,et al. Rutilebearing refractory eclogites: Missing link between continents and depleted mantle
[J].Science,2000,287: 278-281.
[61]O′Neill H S C, Palme H. Composition of the silicate Earth: Implications for accretion and core formation
[M]∥Jackson I, ed. The Earth′s Mantle: Structure, Composition, and Evolution—The Ringwood Volume. Cambridge: Cambridge University Press, 1997. [62]Walker D. Core participation in mantle geochemistry: Geochemical society ingersoll lecture, GSA, Denver, October 1999
[J].Geochimica et Cosmochimica Acta,2000, 64: 2 897-2 911.
[63]Anderson O L, Isaak D G. Another look at the core density deficit of Earth′s outer core[J]. Physics of Earth and Planetary Interior,2002, 131: 19-27.
/
〈 |
|
〉 |