收稿日期: 2008-01-10
修回日期: 2008-01-20
网络出版日期: 2008-03-10
基金资助
国家重点基础研究发展计划项目“大洋碳循环与气候演变的热带驱动”(编号:2007CB51900)资助.
Ocean Carbon Cycle and Tropical Forcing of Climate Evolution
Received date: 2008-01-10
Revised date: 2008-01-20
Online published: 2008-03-10
20世纪气候演变研究的最大突破,在于地球轨道变化驱动冰期旋回的米兰柯维奇理论。然而近年来学术界对热带过程和大气CO2浓度变化的研究进展,暴露了传统的轨道驱动理论存在着对低纬区和碳循环在全球气候系统中作用估计不足的严重缺陷。国家重点基础研究发展计划项目“大洋碳循环与气候演变的热带驱动”拟以南海与西太平洋暖池的深海记录为依据,进行全球性对比和跨越地球圈层的探索,通过观测分析结果与数值模拟的结合、地质记录与现代过程的结合,检验和论证大洋碳储库长周期变化机制的假说,对于不同时间尺度上低纬过程如何通过碳循环在全球气候环境演变中的作用,实现理论上的突破。同时简要介绍了该项目的目的、科学意义、关键科学问题及预期目标等。
翦知湣 , 金海燕 . 大洋碳循环与气候演变的热带驱动[J]. 地球科学进展, 2008 , 23(3) : 221 -227 . DOI: 10.11867/j.issn.1001-8166.2008.03.0221
Scientific forecasting of living environment change for the human society requires a proper understanding of the mechanism and the nature of climate-environment changes. Recent progresses in the studies of tropical process and atmospheric CO2 concentration further reveal the imperfection of the classical Milankovitch theory on the role of low latitude region and carbon cycle in the global climate system, although it has been widely applied to orbitaldriven glacial cycles. The new National Key Basic Research Science Foundation (973) project, entitled "Ocean Carbon Cycle and Tropical Forcing of Climate Evolution", is aimed to clarify and test the hypothesis about the long period of ocean carbon reservoir. This project will achieve global correlation and probe into the connection between different earth's spheres, based on the the deep sea records of the South China Sea and western Pacific warm pool. The results of observations will be combined with mathematic modeling to reveal the role of low latitude process in the global climate environment through carbon cycling on various time scales, contributing to international studies of the evolution of the climate system. This article briefly introduces the research purpose, science siginificance, key sciencfic questions and expected goals of the project.
[1] Imbrie J,Berger A,Boyle E A,et al. On the structure and origin of major glaciation cycles,2,the 100 000-year cycle [J]. Paleoceanography,1993,8: 699-735.
[2] Webster P J. The role of hydrological processes in ocean-atmosphere interaction [J]. Reviews of Geophysics,1994,32: 427-476.
[3] Cole J E,Dunbar R B,McClanahan T R,et al. Tropical Pacific forcing of decadal SST variability in the Western Indian Ocean over the past two centuries [J]. Science,2000,287: 617-619.
[4] Lea D W,Pak D K,Spero H J. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations [J]. Science,2000,289: 1 719-1 724.
[5] Shackleton N J. The 100 000-year ice-age cycle identified and found to lag temperature,carbon dioxide,and orbital eccentricity [J]. Science,2000,289: 1 897-1 902.
[6] Tian J,Wang P,Cheng X,et al. Astronomically tuned Plio-Pleistocene benthic δ18O record from South China Sea and Atlantic-Pacific comparison [J]. Earth and Planetary Science Letters,2002,203: 1 015-1 029.
[7] Wang P,Tian J,Cheng X,et al. Major Pleistocene stages in a carbon perspective: The South China Sea record and its global comparison [J]. Paleoceanography,2004,19,doi: 10.1029/ 2003PA000991.
[8] Wang Pinxian,Tian Jun,Cheng Xinrong,et al. Exploring cyclic changes of the ocean carbon reservoir [J]. Chinese Science Bulletin,2003,48(23): 2 536-2 548. [汪品先,田军,成鑫荣,等. 探索大洋碳储库的演变周期[J]. 科学通报,2003,48(21): 2 216-2 227.]
[9] Cramer B S,Wright J D,Kent D V,et al. Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene(chrons C24n-C25n)[J]. Paleoceanography,2003,18(4): 1 097,doi: 10.1029/2003PA000909.
[10] Wade B S,Pälike H. Oligocene climate dynamics [J]. Paleoceanography,2004,19: PA4019,doi: 10.1029/2004PA001042.
[11] Holbourn A,Kuhnt W,Schulz M,et al. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion [J]. Nature,2005,438: 483-487.
[12] Pälike H,Norris R D,Herrle J O,et al. The heartbeat of the Oligocene climate system [J]. Nature,2006,314: 1 894-1 898.
[13] Wang P,Tian J,Cheng X,et al. Carbon reservoir change preceded major ice-sheet expansion at the Mid-Brunhes event [J]. Geology,2003,31:239-242.
[14] Raymo M E. The timing of major climate terminations [J]. Paleoceanography,1997,12: 577-585.
[15] Berger A,Loutre M F. An exceptionally long interglacial ahead? [J]. Science,2002,297: 1 287-1 288.
[16] Kerr R A. The tropics return to the climate system [J]. Science,2001,292: 660-661.
[17] Wang Pinxian,Jian Zhimin,Liu Zhifei. Interactions between the earth spheres: Deep-sea processes and records(II) tropical forcing of climate changes and Carbon cycling [J]. Advances in Earth Science,2006,21(4): 338-345. [汪品先,翦知湣,刘志飞. 地球圈层相互作用中的深海过程和深海记录(II):气候变化的热带驱动与碳循环[J]. 地球科学进展,2006,21(4): 338-345.]
[18] Kemp A E S,Pike J,Pearce R B,et al. The “Fall dump”—A new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux [J]. Deep-Sea Research II,2000,47: 2 129-2 154.
[19] Kump L R,Arthur M A. Interpreting carbon-isotope excursions: Carbonate and organic matter [J]. Chemical Geology,1999,161: 181-198.
[20] Schmieder F,von Dobeneck T,Bleil U. The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: Initiation,interimstate and terminal event [J]. Earth and Planetary Science Letters,2000,179: 539-549.
[21] Gingele F X,Schmieder F. Anomalous South Atlantic lithologies confirm global scale of unusual mid-Pleistocene climate excursion [J]. Earth and Planetary Science Letters,2001, 186:93-101.
[22] Jiao N,Yang Y,Koshikawa H,et al. Influence of hydrographic conditions on picoplankton distribution in the East China Sea [J]. Aquatic Microbial Ecology,2002,30: 37-48.
[23] Schubert C J,Villanueva J,Calvert S E,et al. Stable phytoplankton community structure in the Arabian sea over the past 200,000 years [J]. Nature,1998,394:563-566.
[24] Jiao N Z,Zhang Y,Chen Y. Time series observation based infrared epifluorescence microscopic approach(TIREM) for accurate enumeration of bacteriochlorophyll containing microbes in marine environments [J]. Journal of Microbiological Methods,2005,63(3),doi:10.1016/ j.mimet.2005.09.002.
[25] Schouten S,Hopmans E C,Schefuss E,et al. Distributional variations in marine crenarchaeotal membrane lipids: A new tool for reconstructing ancient sea water temperatures? [J]. Earth and Planetary Science Letters,2002,204,265-274.
[26] Broecker W S. The great ocean conveyer [J]. Oceanography,1991,49(2): 79-89.
[27] Liu Dongsheng. Ocean Drilling Program and international significance of Chinese paleoceanographic study [J]. Chinese Science Bulletin,2003,48(21): 2 205. [刘东生. 大洋钻探与我国古海洋学研究的国际意义[J]. 科学通报,2003,48(21): 2 205.]
[28] Wang P,Clemens S,Beaufort L,et al. Evolution and variability of the Asian Monson System: State of the art and outstanding issues [J]. Quaternary Science Reviews,2005,24: 595-629.
/
〈 |
|
〉 |