收稿日期: 2011-01-12
修回日期: 2011-08-28
网络出版日期: 2011-10-10
基金资助
国家自然科学基金重点项目“复杂地表冻融过程被动微波遥感机理研究”(编号: 41030534 );国家自然科学基金面上项目“冻土微波辐射有效穿透深度研究”(编号:40971195)资助.
Research Advances in Passive Microwave Remote Sensing of Freeze-Thaw Processes over Complex Landscapes
Received date: 2011-01-12
Revised date: 2011-08-28
Online published: 2011-10-10
张立新, 蒋玲梅, 柴琳娜, 赵少杰, 赵天杰, 李欣欣 . 地表冻融过程被动微波遥感机理研究进展[J]. 地球科学进展, 2011 , 26(10) : 1023 -1029 . DOI: 10.11867/j.issn.1001-8166.2011.10.1023
Soil Freeze-Thaw processes and parameters play an essential role in land surface processes, climate models, global change and other critical aspects. Since passive microwave is sensitive to soil moisture, and has a high revisit frequency, it is suitable for the monitoring of soil Freeze-Thaw processes. Research achievements in microwave remote sensing of frozen soil are reviewed and discussed in this paper. According to the research demands including frozen soil radiation simulation and globally monitoring of frozen soil, several current scientific issues are proposed and analyzed. The ability of microwave remote sensing of Freeze-Thaw processes over complex landscapes involving soils, snow cover and vegetation cover is well evaluated. A preliminary research proposal is presented for addressing these issues.
[1] Zuerndorfer B,England A W,Dobson M C,et al.Mapping Freeze/Thaw boundaries with SMMR data[J].Journal of Agriculture and Forest Meteorology,1990, 52(1/2): 199-225.
[2] Zuerndorfer B, England A W. Radiobrightness decision criteria for Freeze/Thaw boundaries[J].IEEE Transactions on Geoscience and Remote Sensing,1992, 30(1): 89-102.
[3] Judge J, Galantowicz J F, England A W, et al. Freeze/Thaw classification for prairie soils using SSM/I radio brightnesses[J].IEEE Transactions on Geosicence and Remote Sensing,1997, 35(4): 827-832.
[4] Zhang T, Armstrong R L. Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing[J].Geophysical Research Letters, 2001, 28(5): 763-766.
[5] Zhang T, Armstrong R L, Smith J. Investigation of the near-surface soil Freeze-Thaw cycle in the contiguous United States: Algorithm development and validation[J]. Journal of Geophysical Research, 2003, 108(D22): 8 860.
[6] Schmugge T, O′Neill P E, Wang J R. Passive microwave soil moisture research[J].IEEE Transactions on Geoscience and Remote Sensing, 1986, GE-24(1): 12-22.
[7] JacksonT J, Schmugge T J. Passive microwave remote sensing system for soil moisture: Some supporting research[J]. IEEE Transactions on Antennas and Propagation,1989, 27(2): 225-235.
[8] Foster J L, Hall D K, Chang A T C, et al. An overview of passive microwave snow research and results[J].Review of Geophysics and Space Physics,1984, 22(2): 195-208.
[9] Chang A T C, Foster J L, Hall D K. Nimbus-7 SMMR derived global snow cover parameters[J].Allnals of Glaciology,1987, 9: 39-44.
[10] England A W. Radiobrightness of diurnally heated, freezing soil[J].IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(4):464- 476.
[11] Wegmüller U. The effect of freezing and thawing on the microwave signatures of bare soil[J].Remote Sensing of Environment,1990, 33(2): 123-135.
[12] Liou Y, England A W. Annual temperature and radiobrightness signatures for bare soils[J]. IEEE Transactions on Geoscience and Remote Sensing,1996, 34(4): 981-990.
[13] Smith N V, Saatchi S S, Randerson J T. Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002[J]. Journal of Geophysical Research, 2004, 109: D12101.
[14] Jin R, Li X, Che T. A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature[J].Remote Sensing of Environment, 2009, 113: 2 651-2 660.
[15] Han L, Tsunekawa A, Tsubo M. Monitoring near-surface soil freeze-thaw cycles in northern China and Mongolia from 1998 to 2007[J]. International Journal of Applied Earth Observation and Geoinformation,2010,12(5):375-384.
[16] Zhao T, Zhang L, Jiang L, et al. A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery[J].Hydrological Processes,2011,25:1 704-1 716.
[17] Kim Y, Kimball J S, McDonald K C,et al. Developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing[J].IEEE Transactions on Geoscience and Remote Sensing,2011,49(3):949-960.
[18] Zhang L X, Zhao T J, Jiang L M, et al. Estimate of phase transition water content in freeze-thaw process using microwave radiometer[J].IEEE Transactions on Geoscience and Remote Sensing,2010, 48(12): 4 248-4 255.
[19] Hoekstra P, Delaney A. Dielectric properties of soils at UHF and microwave frequencies[J].Journal of Geophysical Research,1974,79(11): 1 699-1 708.
[20] Hallikainen M T, Ulaby F T, Dobson M C, et al. Microwave dielectric behavior of wet soil-Part I: Empirical models and experimental observations[J].IEEE Transactions on Geoscience and Remote Sensing,1985, GE-23(1): 25-34.
[21] Zhang L, Shi J, Zhang Z, et al. The estimation of dielectric constant of frozen soil-water mixture at microwave bands[C]∥Proceedings of Geoscience and Remote Sensing Symposium, 2003, 4: 2 903-2 905.
[22] Mironov V L, Dobson M C, Kaupp V H, et al. Generalized refractive mixing dielectric model for moist soils[J].IEEE Transactions on Geoscience and Remote Sensing,2004, 42(4): 773-785.
[23] Li Liying, Zhang Lixin, Zhao Shaojie. Laboratory measurement of the dielectric constant of frozen soil[J].Journal of Beijing Normal University(Natural Science),2007,43(3):241-244.[李丽英, 张立新, 赵少杰. 冻土介电常数的实验研究[J]. 北京师范大学学报:自然科学版, 2007, 43(3): 241-244.]
[24] England A W. Relative influence upon microwave emissivity of fine-scale stratigraphy, internal scattering, and dielectric properties[J].Pure and Applied Geophysics, 1976, 114(2): 287-299.
[25] England A W, Galantowicz J F, Zuerndorfer B W. A volume scattering explanation for the negative spectral gradient of frozen soil[C]∥Proceedings of the IEEE International Geoscience and Remote Sensing Symposium,1991,3:1 175-1 177.
[26] Liou Y, England A W. A land-surface process/radiobrightness model with coupled heat and moisture transport for freezing soils[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(2): 669-677.
[27] Schwank M, Stahli M, Wydler H, et al. Microwave L-band emission of freezing soil [J].IEEE Transactions on Geoscience and Remote Sensing,2004,42(6): 1 252-1 261.
[28] Mironov V L, Bobrov P P, Zhirov P V, et al. Radiobrightness dynamics of freezing/thawing processes for different soils[C]∥Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2006:2 998-3 001.
[29] Zhang Lixin, Zhao Shaojie, Jiang Lingmei. The time series of microwave radiation from representative land surface in the upper reaches of Heihe River during alternation of freezing and thawing[J].Journal of Glaciology and Geocryology, 2009, 31(2): 198-206.[张立新, 赵少杰, 蒋玲梅.冻融交替季节黑河上游代表性地物类型的微波辐射时序特征[J]. 冰川冻土, 2009, 31(2): 198-206.]
[30] Zhao S, Zhang L, Zhang Y, et al. The coherent microwave emission of freezing soil: Experimental research and model simulation[C]∥Proceedings of Geoscience and Remote Sensing Symposium, 2009, 2: 678-681.
[31] Kerr Y H, Waldteufel P, Wigneron J P, et al. The SMOS mission: New tool for monitoring key elements of the global water cycle[J].Proceedings of the IEEE,2010, 98(5): 666-687.
[32] Le Vine D M, Lagerloef G S E, Colomb F R, et al. Aquarius: An instrument to monitor sea surface salinity from space[J].IEEE Transactions on Geoscience and Remote Sensing,2007, 45(7): 2 040-2 050.
[33] Entekhabi D, Njoku E G, O′Neill P E, et al. The Soil Moisture Active Passive (SMAP) mission [J].Proceedings of the IEEE,2010, 98(5): 704-716.
/
〈 |
|
〉 |