收稿日期: 2000-02-28
修回日期: 2000-07-05
网络出版日期: 2001-02-01
基金资助
国家杰出青年科学基金“特提斯喜马拉雅中新生代古海洋与生烃环境”(编号 :49625203)资助.
SUMMARIZATION ON THE STUDYING METHODS OF THE PALAEO-OCEAN DISSOLVED OXYGEN
Received date: 2000-02-28
Revised date: 2000-07-05
Online published: 2001-02-01
胡修棉,王成善 . 古海洋溶解氧研究方法综述[J]. 地球科学进展, 2001 , 16(1) : 65 -71 . DOI: 10.11867/j.issn.1001-8166.2001.01.0065
Major studying methods and their new development related to palaeo ocean dissolved oxygen are summarized and discussed. Studying methods discussed include bioturbation, sulfur/carbon ratio, degree of pyritization (DOP), sulfur and carbon isotopes, trace element, rare earth element (mainly cerium anomaly), organic geochemistry and palaeo ecology (mainly dissolved oxygen index). It is proposed that reestablishment of the paleo ocean dissolved oxygen will greatly benefit to understand paleo ocean current, paleo climate, bio events, and organic evolution, which will largely be relied on establishment of substitute markers for dissolved oxygen, knowledge of oxic environment and oxygen cycle of Earth science system.
[1] Schlanger S O, Jenkyns H C. Cretaceous oceanic anoxic events: cause and consequence[J]. Geol Mijnbown, 1976, 55: 179~184.
[2] Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction[J]. Science, 1996, 272: 1 155~1 158.
[3] Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea[J]. Science, 1997, 276: 235~238.
[4] Bratton J F, Berry W B N, Morrow J R. Anoxia pre-dates Frasnian-Famennian boundary mass extinction horizon in the Great Basin, USA [ J ]. Palaeogeogr Palaeoclimatol Palaeoecol, 1999, 154: 275~292.
[5] Kaiho K, Kajiwara Y, Kaiho K,et al. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: their decrease, subsequent warming, and recovery[J]. Palaeoceanography, 1999, 14: 511~524.
[6] Kaiho K. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep-sea circulation [J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1992, 83: 65~85.
[7] Harries P J, Kauffman E G, Hansen T A. Models for biotic survival following mass extinction[A]. In: Hart M B, ed. Biotic recovery from mass extinction events[C]. Geological Society Special Publication No.102,1996.41~60.
[8] Raulp D M, Sepkoski J J Jr. Mass extinctions in the marine fossil record[J]. Science, 1982, 215: 1 501~1 503.
[9] 王成善,胡修棉,万晓樵,等.西藏南部中白垩世Cenomanian-Turonian缺氧事件研究[J].自然杂志,1999,(4):244~245.
[10] Rhoads D C, Morse J W. Evolutionary and ecological significance of oxygen-deficient marine basins[J]. Lethaia, 1971,4: 413~428.
[11] Berner R A, Raiswell R. C/S method for distinguishing freshwater from marine sedimentary rocks [J]. Geology, 1984, 12: 365~368.
[12] Calvert S E, Karlin R E. Relationships between sulfur, organic carbon and iron in the modern sediments of the Black Sea[J]. Geochim Cosmochim Acta, 1991, 55: 2 483 ~2 490.
[13] Raiswell R, Berner R A. Pyrite formation in euxinic and semi-euxinic sediments[J]. Amer J Sci, 1985, 285: 710~724.
[14] Raiswell R, Buckley F, Berner R A, et al. Degree of pyritization of iron as a palaeo environmental indicator of bottom-water oxygenation[J]. J Sediment Petrol, 1988, 58: 812~819.
[15] Dean W E, Arthur M A. Iron-sulfur-carbon relationships in organic-carbon-rich sequence I: Cretaceous Western Interior Seaway[J]. Amer J Sci, 1989, 289: 708~743.
[16] Kajiwara Y, Kaiho K. Oceanic anoxic at the Cretaceous/tertiary boundary supported by the sulfur isotope record[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1992, 99: 151~162.
[17] Arthur M A, Dean W, Pratt L M. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary[J]. Nature, 1988, 335: 714~717.
[18] Arthur M A, Sageman B B. Marine black shales: depositional mechanisms and environments of ancient deposits[J]. Annu Rev Earthplanet Sci,1994, 22: 499~551.
[19] 同济大学海洋地质系.古海洋学概论[M].上海:同济大学出版社,1989.
[20] 汪云亮.深海沉积系元素成因的地球化学原理[J].岩相古地理,1990,(2):46~56.
[21] Calvert S E, Pedersen T F. Geochemistry of recent oxic and anoxic marine sediments: implication for the geological record[J]. Chemical Geology, 1993, 113: 67~88.
[22] 程先豪.海洋沉积物中碘的早期成岩再迁移[J].海洋学报, 1993,15(4):56~63.
[23] YAN Jia-xin, ZHANG Haiqing. Paleo-oxygenation facies: A Aew research field in sedimentology[J]. Geological science and Technology Information, 1996,15(3):7~13.[颜佳新,张海清.古氧相——一个新的沉积学研究领域[J].地质科技情报,1996,15(3):7~13.]
[24] Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsyvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.[J]. Chemical Geology, 1992, 99: 65~82.
[25] Minami E. Gehalte seltener erden in europ? ischen und japanischen Tonschiefern[J]. Nachr Ges Wiss Goett(Math -Phys, Kl Ⅳ), 1935, 1: 155~170.
[26] Piper D Z. Rare earth elements in the sedimentary cycle: a summary[J]. Chemical Geology, 1974, 285~304.
[27] Wang Y L, Liu Y G, Schmitt R A. Rare earth elements geo-chemistry of south Atlantic deep sea sediments: Ce anomaly change at -54 Ma.[J]. Geochim Cosmochim Acta, 1986, 50:1 337~1 355.
[28] Wu Mingqing, Ouyang Ziyuan, Song Yunhua, et al. Paleoocean redox change in western marin of Tarim Basin-evidenced from REE anomaly of shelly fossils[J]. Science in China(Series B),1992,(2):206~215.[吴明清,欧阳自远,宋云华,等.塔里木盆地西缘古海洋氧化还原条件的变化——介壳化石的稀土元素铈证据[J].中国科学(B辑),1992,2:206~215.]
[29] YIN Haisheng, PENG Jun, XIA Wenjie. The late Precam-brian paleo-ocean evolution of the southeast Yangtze continentals margin: REE record[J]. Acta Sedimentologica Sinica, 1995,13(4):131~137.[伊海生,彭军,夏文杰.扬子东南大陆边缘晚前寒武纪古海洋演化的稀土元素记录[J].沉积学报,1995,13(4):131~137.]
[30] Shimizu H, Masuda K. Cerium in chert as an indication of marine environment of its formation[J]. Nature, 1977, 266: 346~348.
[31] Liu Y G, Miah M R U, Schmitt R A. Cerium: a chemical tracer for paleo-oceanic redox conditions[J]. Geochim Cosmochim Acta, 1988, 52: 1 361~1 371.
[32] Fu Jiamo, Sheng Guoying, Xu Jiayou, et al. Application of biological markers in the assessment of paleoenvironments of Chinese non-marine sediments[J]. Organic Geochemistry,1990, 16: 769~779.
[33] Farrimond P, Eglinton G, Brassell S C, et al. The Cenomanian-Turonian anoxic event in Europe: an organic geochemical study[J]. Mar Petrol Geol, 1990, 7: 75~89.
[34] Grantham P J, Posthuma J, DeGroot K. Variation and significance of the C27and C28triterpane content of a North Sea core and various North Sea crude oils[A]. In: Douglas A G, Maxwell J R, eds. Advances in Organic Geochemistry 1979[C]. New York: Pergamon Press, 1980.29~38.
[35] Peters K E, Moldowan J M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum[J]. Organic Geochemistry, 1991, 17: 47~61.
[36] ten Haven HL, de Leeuw J W, Rullkotter J, et al. Restricted utility of the pristane/phytane ratio as a paleoenvironmental indicator[J]. Nature, 1987, 330: 641~643.
[37] Peters K E, Moldowan J M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments[M]. Prentice Hall Inc,1995.[彼得斯K E,莫尔多万J M.生物标记化合物指南——古代沉积物和石油中的分子化石的解释[M].姜乃煌,等译.北京:石油工业出版社,1995.]
[38] HU Xiu-mian, WANG Cheng-shan, LI Xiang-hui, et al. Cenomanian-Turonian anoxc event in southern Tiet: A study of organic geochemistry[J].Geochimica, 2000, 29(5):417~424.[胡修棉,王成善,李祥辉等.西藏南部Cenomanian-Turonian缺氧事件:有机地球化学研究[J].地球化学.2000,29(5):417~424.]
[39] Jenkyns H C. Cretaceous anoxic events: from continents to oceans[J]. J Geol Soc London, 1980, 137: 171~188.
[40] Sjoerdsma P G, van der Zwaan G J. Simulating the effect of changing organic flux and oxygen content on the distribution of benthic foraminifera[J]. Mar Micropaleontol, 1992, 19: 163~180.
[41] Berhard J M. Characteristic assemblages and morphologies of benthic foraminifera from anoxic, organic-rich deposits: Jurassic through Holocene[J]. J Foraminifer Res, 1986, 16: 207~205.
[42] Kaiho K. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean[J]. Geology, 1994, 22: 719~722.
[43] Kaiho K. Planktonic and benthic foraminiferal extinction events during the last 100 Ma[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1994, 111: 45~71.
[44] Kaiho K, Hasegawa T. End-Cenomanian benthic foraminiferal extinctions and oceanic dysoxic events in the northwestern Pacific Ocean[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1994, 111: 29~43.
[45] Kaiho K. A low extinction rate of intermediate-water benthic foraminifera at the Cretaceous/Tertiary boundary[J]. Mar Micropaleontol, 1992, 18: 229~259.
[46] Kaiho K. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep-sea circulation[J]. Palaeogeogr Palaeoclimatol Palaeoecol, 1991, 83: 65~85.
[47] Wang Chengshan, Hu Xiumian, Li Xianghui. Dissolved Oxygen in Paleo-ocean: Anoxic events and hight-oxic problems[J]. Marine Geology &Quaternary Geology,1999,19(3):39~47.[王成善,胡修棉,李祥辉.古海洋溶解氧与缺氧和富氧事件[J].海洋地质与第四纪地质,1999,19(3):39~47.]
/
〈 |
|
〉 |