干旱气候变化与可持续发展

应用非线性科学方法建立环境与生态综合理论体系的探讨

展开
  • 北京师范大学资源与环境科学系  北京  100875
仪垂祥,男,1955年9月出生,副教授,主要从事非线性理论和地球表层动力学研究.

收稿日期: 1994-06-27

  修回日期: 1994-08-08

  网络出版日期: 1995-04-01

APPROACH ON APPLYING THE NONLINEAR THEORIES TO FORMULATE A SYNTHETICAL THEORY SYSTEM OF ENVIRONMENT AND ECOLOGY

Expand
  • Department of Resources and Environmental Sciences, Beijing Normal University,Beijing  100875

Received date: 1994-06-27

  Revised date: 1994-08-08

  Online published: 1995-04-01

摘要

阐述建立环境与生态的综合理论体系的必要性和迫切性;综述非线性科学方法在地学中的应用现状;展望应用非线性科学方法建立环境与生态的综合理论体系的前景。

本文引用格式

仪垂祥 . 应用非线性科学方法建立环境与生态综合理论体系的探讨[J]. 地球科学进展, 1995 , 10(2) : 164 -168 . DOI: 10.11867/j.issn.1001-8166.1995.02.0164

Abstract

Necessity and urgency to formulate a synthetical theory system of environment and ecology are elaborated. The current situations of applying the nonlinear theories to Earth sciences are disscused. A perspective in applying the nonlinear theories to formulate a synthetical theory system of environment and ecology is given.

参考文献

[1] 肖笃宁.景观生态学的理论、方法及应用.中国林业出版社,1991. 18-29.
[2] Manabe S. Simulation of climate by general circulation models with hydrologic cycles. In:Land Surface Processes in Atmospheric General Circulation Models(Eagleson P S ed.).Cambridge University Press, London,1982. 19-66.
[3] Deardorff J W. Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J Geophys Res, 1978, 20:1889-1903.
[4] 叶笃正,曾庆存,郭裕福.当代气候研究.气候出版社,1991.1-10.
[5] Gates W L. Climate and Climate System. In: Physically—Based Modelling and Simulation of Climate and Climate Change: Part 1(Schlesinger M E ed.).Kluwer Academic Publ, London.1988. 3-21.
[6] 仪垂祥.非线性科学及其在地学中的应用.气象出版社,1995.
[7] Glansdorff P and Prigogine I. Thermodynamic Theory of Structure, Stability and Fluctuations,Wiley-Interscience, New York,1971.
[8] Nicolis G and Prigoine I. Self-Organization in Nonequilibrium Systems.Wiley,New York,1977.
[9] Haken H. Synergetics, 2nd ed. Springer-Verlag, Berlin,1978.
[10] Thom R. Structural Stability and Morphogenesis. Banjamin. Massachusetts, 1975.
[11] Lorenz E N. Denterminative nonperiodic flows. J Atoms Sci, 1963,20:130-141.
[12] Feigenbaum M J. Quantative univergality for a class of non-linear transformations. J Stat Phys,1978,19:25-52.
[13] mandbrot B B. Fractals, Form. Chance and Dimension. Freeman,1977.
[14] 仪垂祥.气候变化与气候模型.海洋出版社,1993.
[15] Scholz C H, Mandelbrot B B et al. Special issue: Fractrals in Geophysics. Pure and Applied Geophysics, Berlin,1989,131(1-2).
[16] 陈顺等.分形与分维在地球科学中的应用.学术期刊出版社,1988.
[17] 刘式达,刘式适.分形与分维引论.气象出版社,1993.
[18] Paltridge G W. Global dynamics and climate—a system of minimum entropy exchange. Q J Meteorol Soc, 1975, 101:475-484.
[19] Paltridge G W. The steady-state format of global climate system. Q J Meteorol Soc,1978,104:927-945.
[20] Palfridge G W. Thetmodymamic dissipation and the global climate system. Q J Meteoroe Soc, 1991,107:531-547.
[21] Nicolis G and Nicolis C. On the entropy balance of the earth-atmosphere system. Q J Metedrol Soc, 1980,106:691-706.
[22] Stephens G L and O'brim D M. Entropy and Climate, I:EREE observations of the entropy production of the earth. Q J Meteorol Soc,1993,119:121-152.
[23] 仪垂祥.地球表层动力学理论研究,I:陆地表层系统;II:动力学方程组.北京师范大学学报,1994,30(4):511-515;516-524.
[24] 仪垂祥,伍荣生.一个自组织气候模型.大气科学,1994,18(2):129-140.

文章导航

/