综述与评述

数据同化算法在青藏高原高寒生态系统能量—水分平衡分析中的应用

  • 李新 ,
  • 潘小多 ,
  • 周剑 ,
  • 杨永民 ,
  • 王根绪
展开
  • 1. 中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000;2. 中国科学院成都山地灾害与环境研究所,四川 成都 610041;3. 兰州大学资源环境学院,甘肃 兰州 730000
周剑(1979-),男,浙江杭州人,助理研究员,主要从事地下水、路面过程的研究.E-mail:zhoujianmaomi@163.com

收稿日期: 2008-01-02

  修回日期: 2008-05-16

  网络出版日期: 2008-09-10

基金资助

国家重点基础研究发展计划项目“我国冰冻圈动态过程及其对气候、水文和生态的影响机理与适应对策”(编号:2007CB411504);国家自然科学重点项目“典型山地水文生态系统水循环多尺度耦合的对比试验研究”(编号:40730634)资助.

Data Assimilation Algorithm Apply to Energy-Water Balance Analysis of the High Cold Ecosystem at Qinghai-Tibet Plain, Northwest China

  • LI Xin ,
  • PAN Xiaoduo ,
  • ZHOU Jian ,
  • YANG Yongmin ,
  • WANG Genxu
Expand
  • 1.Cold and Arid Regions Environmental and Engineering Research Institute , Chinese Academy of Sciences, Lanzhou 730000, China; 2. Institute of Mountain Hazards and Environment,Chinese Academy of Sciences, Chengdu 610041, China; 3. Resources and Environment Institute of Lanzhou University, Lanzhou 730000, China

Received date: 2008-01-02

  Revised date: 2008-05-16

  Online published: 2008-09-10

摘要

位于青藏高原腹地的多年冻土地带,其冻融过程中的土壤含水量和土壤冻结深度的变化对气候强烈响应并产生显著的陆面能—水平衡变化,进而又对全球气候产生较大的反馈作用。为了能准确模拟这种变化,选取青藏高原多年冻土分布区的风火山左冒孔流域(长江源)进行了相关的野外数据采集和试验,以考虑土壤冻融影响的水—热耦合陆面过程模型——SHAW为动力学约束框架,验证集合卡尔曼滤波算法在改进模型对土壤冻融过程中土壤水分和冻土深度的计算效果。基于试验点的数据同化计算结果表明:数据同化方法可以融合观测信息显著提高水—热耦合模型对土壤冻融过程中状态变量(土壤水分和冻深)的模拟,并进而改善模型对其它相关能量—水分变量的计算,为在高寒冻土地区利用多源信息进行融合监测提供了理论依据。

本文引用格式

李新 , 潘小多 , 周剑 , 杨永民 , 王根绪 . 数据同化算法在青藏高原高寒生态系统能量—水分平衡分析中的应用[J]. 地球科学进展, 2008 , 23(9) : 965 -973 . DOI: 10.11867/j.issn.1001-8166.2008.09.0965

Abstract

The frozen soil region of many years located in the Qinghai-Tibet Plain hinterland, Changing of the Water content of soil during freeze-thaw process, intensely responds to climate change and brings remarkable change on land energy-water balance, then has the large feedback function to the global climate. In order to reveal this kind of change, we used the observation data from the wind volcano testing field system, selected water-heat coupling model SHAW as dynamics restraint frame, which consider the influence of snow cover & the vegetation cover & the forest flooring to the soil freezing and thawing, and improved SHAW forecast capacity to the soil moisture content and the frozen soil depth by Ensemble Kalman Filter of data simulation method. The analysis based on data assimilation theory indicate that the data assimilation method may remarkably enhance the forecasting ability of water-heat coupling model to state variables, and provide theory basis for monitor utilizing multiple source information in frozen soil area.

参考文献

[1] Li Xin,Cheng Guodong. Review of model of the permafrost-climate model[J]. Journal of Glaciology and Geocryology,2002,243:315-321.[李新,程国栋.冻土气候关系模型评述[J].冰川冻土,2002,243:315-321.]

[2] Allison I,Barry R G,Goodison B E. Climate and CryosphereCliC project science and coordination plan version 1[Z]. WCRP-114/WMO/TD No.1053,2001.

[3] Jin H J,Brown J. Great challenges of and innovative solutions to the unstable permafrost in central and high Asia under a warming climate[J]. Episodes,2007,301:54-55.

[4] Daley R. Atmospheric Data Analysis[M]. New York:Cambridge University Press,1991:1-457.

[5] Talagrand O. Assimilation of observations,an introduction[J]. Journal of the Meteorological Society of Japan,1997,751B:191-209.

[6] Li Xin,Huang Chunlin,Che Tao,et al. The progress and outlook of China's land surface data assimilation system[J]. Progress in Nature Science,2007,172:163-173.[李新,黄春林,车涛,.中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展,2007,172:163-173.]

[7] England A W,DeRoo R. Active layer thickness and moisture content of arctic tundra from SVAT/Radiobrightness models and assimilated 1.4 or 6.9 GHz brightness[R]. Final Report of NSF Award,ID 0240747,2006.

[8] Flerchinger G N,Saxton K E. Simultaneous heat and water model of a freezing snow-residue-soil system.theory and development[J]. Transactions of the ASAE,1989,322:565-571.

[9] Nassar I N,Horton R,Flerchinger G N. Simultaneous heat and mass transfer in soil columns exposed to freezing/thawing conditions[J]. Soil Science,2000,1653:208-216.

[10] Zheng Xiuqing,Fan Guisheng,Xing Shuyan. Moisture Content Movement in Seasonal Non-saturated Freezing and Thawing Soil[M]. Beijing: Geological Press,2002.[郑秀清,樊贵盛,邢述彦. 水分在季节性非饱和冻融土壤中的运动[M].北京:地质出版社,2002.]

[11] Yang K,Koike T,Ye B,et al. Inverse analysis of the role of soil vertical hetero-geneity in controlling surface soil state and energy partition[J]. Journal of Geophysical Research,2005,110,D08101,doi:10.1029/2004JD005500.

[12] Fuchs M,Campbell G S,Papendick R I. An analysis of sensible and latent heat flow in a partially frozen unsaturated soil[J]. Soil Science Society of America Journal,1978,423:379-385.

[13] Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics[J]. Journal of Geophysical Research,1994,99C5:10 143-10 162.

[14] Evensen G.The ensemble Kalman filter: Theoretical formulation and practical implementat-ion[J]. Ocean Dynamics,2003,53:343-367.

[15] Burgers G,van Leeuwen P J,Evensen G. Analysis scheme in the ensemble Kalman filter[J]. Monthly Weather Review,1998,126:1 719-1 724.

[16] Houtekamer P L,Mitchell H L. Data assimilation using an ensemble Kalman filter technique[J]. Monthly Weather Review,1998,126:796-811.

[17] Houtekamer P L,Mitchell H L.A sequential ensemble Kalman filter for atmospheric data assimilation[J]. Monthly Weather Review,2001,129:123-137.

[18] Keppenne C L.Data assimilation into a primitive-equation model with a parallel ensemble Kalman filter[J]. Monthly Weather Review,2000,128:1 971-1 981.

[19] Mitchell H L,Houtekamer P L. An adaptive ensemble Kalman filter[J]. Monthly Weather Review,2000,128:416-433.

[20] Whitaker J S,Hamill T M. Ensemble data assimilation without perturbed observations[J]. Monthly Weather Review,2002,130:1 913-1 924.

[21] Brusdal K,Brankart J M,Evensen G,et al. A demonstration of ensemble-based assimilation methods with a layered OGCM from the perspective of operational ocean forecasting systems[J]. Journal of Marine Systems,2003,40/41:253-289.

[22] Reichle R H,Entekhabi D. Downscaling of radio brightness measurements for soil moisture estimation: A four-dimensional variational data assimilation approach[J]. Water Resources Research, 2001,379:2 353-2 364.

[23] Reichle R H,Walker J P,Koster R D,et al. Extended versus ensemble filtering for land data assimilation[J]. Journal of hydrometeorology,2002,3:728-740.

[24] Reichle R H,McLaughlin D B,Entekhabi D. Hydrologic data assimilation with the ensemble Kalman filter[J]. Monthly Weather Review,2002,130:103-114.

[25] Moradkhani H,Sorooshian S,Gupta H V,et al. Dual state-parameter estimation of hydrolog-ical models using ensemble kalman filter[J]. Advances in Water Resources,2005,28:135-147.

[26] Zhou Jian,Li Xin,Wang Genxu,et al. Coupled land surface process pattern SIB2 with the unsaturated seepage model and its application[J]. Advances in Earth Science,2008,236:570-579.[周剑,李新,王根绪,.陆面过程模式SIB2与包气带入渗模型的耦合及其应用[J].地球科学进展,2008,236:570-579.]

文章导航

/