收稿日期: 2008-08-10
修回日期: 2008-10-09
网络出版日期: 2008-11-10
基金资助
国家自然科学基金项目“海洋天然气水合物地质系统的沉积物粒度制约、自生矿物和有孔虫响应”(编号:40772073);中国综合大洋钻探计划(IODP-China);中石化海相油气勘探前瞻性项目“海相优质烃源岩形成的地球生物学过程”(编号:G0800-06-ZS-319)联合资助.
Stable Carbon Isotopic Response of the Benthic Foraminifera from IODP311 to the Marine Methane Hydrate Geo-system
Received date: 2008-08-10
Revised date: 2008-10-09
Online published: 2008-11-10
为了探索海洋天然气水合物背景下有孔虫特征的响应,对综合大洋钻探计划(IODP) 311航次岩芯沉积物中底栖有孔虫Uvigerina peregrina和Bulimina mexicana进行了初步研究。通过对冷泉站位U1328和毗邻的非冷泉站位U1327沉积物中底栖有孔虫Uvigerina peregrina和Bulimina mexicana的显微形貌特征和碳、氧稳定同位素测试等,证实有孔虫壳体未受到后期成岩作用的改造和自生碳酸盐岩的交代影响,有孔虫壳体的碳稳定同位素呈现明显的负偏。其中U1327站位中U.peregrina δ13C为-0.67‰~-2.75‰(PDB),B.mexicanaδ13C为-0.51‰~-1.52‰(PDB);U1328站位中U.peregrina δ13C为 -0.72‰~-2.71‰(PDB),B.mexicanaδ13C为 -0.58‰~-1.45‰(PDB)。底栖有孔虫壳体的碳稳定同位素负偏成因可能与水合物不稳定分解释放的甲烷厌氧氧化作用和食物源有关,因而可较好地指示海底天然气水合物系统地质背景。
关键词: IODP 311; 天然气水合物地质系统; 甲烷渗漏; 底栖有孔虫; 碳稳定同位素
李清 , 王晓芹 , 陈洪仁 , 陈祈 , 王家生 . IODP 311航次底栖有孔虫碳稳定同位素对天然气水合物地质系统的指示[J]. 地球科学进展, 2008 , 23(11) : 1161 -1166 . DOI: 10.11867/j.issn.1001-8166.2008.11.1161
A preliminary research of the benthic Foraminifera from Integrated Ocean Drilling Program (IODP) Expedition 311 has been carried out for the purpose of better understanding their stable carbon isotopic response to the marine gas hydrate geo-system. SEM photographs and stable oxygen isotopes of the species Uvigerina peregrina and Bulimina mexicana indicated that diagenesis and authigenic carbonate precipitation had little effect on Foraminifera. Uvigerina peregrina and Bulimina mexicana collected from the sediments in seepage Site U1328 and in adjacent non-seepage Site U1327 exhibited a distinct negative δ13C excursion with values of U. peregrina -0.67‰~-2.75‰ PDB, B. mexicana -0.51‰~-1.52‰ PDB in Site U1327 and U. peregrina-0.72‰~-2.71‰ PDB, B.mexicana -0.58‰~-1.45‰ PDB in Site U1328 respectively. The formation of distinct stable carbon isotopic excursions of benthic Foraminifera could be most likely interpreted by the involvement of both anaerobic oxidation of methane (AOM) and food sources in sediments. The distinct negative carbon isotopic excursion of benthic Foraminifera thus could be believed as one of indicators to recognize the marine gas hydrate geo-system.
[1] Martin R A,Nesbitt E A,Campbell K A. Carbon stable isotopic composition of benthic foraminifera from Pliocene cold methane seeps,Cascadia accretionary margin[J]. Palaeogeography,Palaeoclimatology, Palaeoecology,2007,246:260-277.
[2] Niewohner C,Hensen C,Kasten S,et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia[J]. Geochimica et Cosmochimica Acta,1998,62:455-464.
[3] Rathburn A E,Levin L A,Held Z,et al. Benthic foraminifera associated with cold methane seeps on the northern California margin:Ecology and stable isotopic composition[J]. Marine Micropaleontology,2000,38:247-266.
[4] Hill T M,Kennett J P,Spero H J. Foraminifera as indicators of methane-rich environments:A study of modern methane seeps in Santa Barbara Channel,California[J]. Marine Micropaleontology,2003,49:123-138.
[5] Chen Fang,Su Xin,Lu Hongfeng,et al. Carbon stable isotopic composition of benthic foraminiferas from the north of the south China sea:Indicator of methane-rich environment[J]. Marine Geology and Quaternary Geology,2007,27:1-7.[陈芳,苏新,陆红锋,等.南海北部浅表层沉积底栖有孔虫碳同位素及其对富甲烷环境的指示[J]. 海洋地质与第四纪地质,2007,27:1-7.]
[6] Wefer G,Heinze P-M,Berger W H. Clues to ancient methane release[J]. Nature,1994,369:282.
[7] Garidel-Thoron T D,Beaufort L,Bassinot F,et al. Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode[J]. Proceedings of the National Academy of Sciences,2004,101:9 187-9 192.
[8] Barbieri R,Panieri G. How are benthic foraminiferal faunas influenced by cold seeps? Evidence from the Miocene of Italy[J]. Paleogeography,Paleoclimatology,Paleoecology,2004,204:257-275.
[9] Panieri G. Benthic foraminifera associated with a hydrocarbon seep in the Rockall Trough(NE Atlantic)[J]. Geobios,2005,38:247-255.
[10] Kennett J P,Cannariato K G,Hendy I L,et al. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials[J]. Science,2000,288:128-133.
[11] Sen Gupta B K,Aharon P. Benthic foraminifera of bathyal hydrocarbon vents of the Gulf of Mexico:Initial report on communities and stable isotopes[J]. Geo-Marine Letters,1994,14:88-96.
[12] Hill T M,Kennett J P,Valentine D L. Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps,Hydrate Ridge,northeast Pacific[J]. Geochimica et Cosmochimica Acta,2004,68:4 619-4 627.
[13] Sen Gupta B K,Platon E,Bernhard J M,et al. Foraminiferal colonization of hydrocarbon-seep bacterial mats and underlying sediment,Gulf of Mexico slope[J]. Journal of Foraminiferal Research,1997,27:292-300.
[14] Expedition 311 Scientists. Cascadia Margin Gas Hydrates[R]. IODP Preliminary Report,2005,311,doi:10:2204/ iodp.pr.311.
[15] Riedel M. Three dimensional seismic investigations of northern Cascadia marine gas hydrates[Z]. Canada:University of Victoria,2001.
[16] Rathburn A E,Perez M E,Martin J B,et al. Relationships between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey bay,California[J]. Geochemistry Geophysics Geosystems,2003,4:1 106.
[17] Martin J B,Day S A,Rathburn A E,et al. Relationships between the stable isotopic signatures of living and fossil foraminifera in Monterey bay,California[J]. Geochemistry Geophysics Geosystems,2004,5,Q04004,doi:10.1029/2003GC000629.
[18] Panieri G. Foraminiferal response to an active methane seep environment:A case study from the Adriatic sea[J]. Marine Micropaleontology,2006,61:116-130.
[19] Spero H J,Lea D W. Experimental determination of stable isotope variability in Globigerina bulloides:Implications for paleoceanographic reconstructions[J]. Marine Micropaleontology,1996,28:231-246.
[20] Hallam S J,Putnam N,Preston C M,et al. Reverse Methanogenesis:Testing the Hypothesis with environmental genomics[J]. Science,2004,305:1 457-1 462.
[21] Hoehler T M,Alperin M J,Albert D B,et al. Field and laboratory studies of methane oxidation in an anoxic marine sediment:Evidence for a methanogen-sulfate reducer consortium[J]. Global Biogeochem Cycles,1994,8:451-463.
[22] Boetius A,Ravenschlag K,Schubert C J,et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature,2000,407:623-626.
[23] Hinrichs K U,Boetius A. The anaerobic oxidation of methane: New insights in microbial ecology and biogeochemistry[C]∥Wefer G,Billet D,Hebbeln D,eds. Ocean Margin Systems. Heidelberg:Springer-Verlag,2002:457-477.
[24] Hinrichs K U,Hayes J M,Sylva S P,et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999,398:802-805.
[25] Lanoil B D,Sassen R,La Duc M T,et al. Bacteria and archaea physically associated with gulf of mexico gas hydrates[J]. Applied and Environmental Microbiology,2001,67:5 143-5 153.
[26] Michaelis W,Seifert R,Nauhaus K,et al. Microbial reefs in the black sea fueled by anaerobic oxidation of methane[J]. Science,2002,297:1 013-1 015.
[27] Orphan V J,Hinrichs K U,Ussler W,et al. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in Anoxic Marine Sediments[J]. Applied and Environmental Microbiology,2001,67:1 922-1 934.
[28] Thomsen T R,Finster K,Ramsing N B. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment[J]. Applied and Environmental Microbiology,2001,67:1 646-1 656.
[29] Jiasheng W,Wang Y,Li Q. Potential contributions of extremophiles to hydrocarbon resources in marine extreme environments: A review[J]. Frontiers of Earth Science in China,2007,1:444-451.
/
〈 |
|
〉 |