收稿日期: 2006-09-18
修回日期: 2007-01-31
网络出版日期: 2007-04-10
基金资助
国家科技支撑计划项目“灾害天气精细数值预报系统及短期气候集合预测研究”第四课题“短期气候集合预测技术”(编号:2006BAC02B04);国家自然科学基金项目“延伸预报中减少模式不确定性的动力相似集合方法”(编号:40675039)和“跨季度预报的相似—动力方法研究”(编号:40575036)资助.
Study Progress in Prediction Strategy and Methodology on Numerical Model
任宏利 , 丑纪范 . 数值模式的预报策略和方法研究进展[J]. 地球科学进展, 2007 , 22(4) : 376 -385 . DOI: 10.11867/j.issn.1001-8166.2007.04.0376
At present, numerical prediction has been a primary technique for objective forecast after half a century's development. Under the circumstance of model and data given, the improvement of predictive level is to great extent dependent on the prediction strategy and method that are employed. In the present paper, the study progress in prediction strategy and methodology on numerical model in the world, which primarily includes the correction of prediction errors, ensemble prediction techniques and so on, has been comprehensively reviewed. It is suggested that there exist a feasible approach to improving predictive level based on prediction strategy by combining statistical and dynamical methods together and extracting information from historical data. Moreover, on the basis of summarizing previous work, the studies on the strategy and methodology of dynamical analogue prediction developed in recent years are also introduced, especially including situations of prediction experiments in complex operational model.
[1]Kalnay E. Atmospheric Modeling, Data Assimilation and Predictability[M]. Cambridge: Cambridge University Press, 2003.
[2]Ren Hongli. Strategy and Methodology of Dynamical Analogue Prediction[D]. Lanzhou: Lanzhou University, 2006.[任宏利.动力相似预报的策略和方法[D]. 兰州:兰州大学,2006.]
[3]Chou Jifan. Why to combine dynamical and statistical methods together? —Also discuss how to combine[J]. Plateau Meteorology,1986,5(4):367-372.[丑纪范.为什么要动力—统计相结合?——兼论如何结合[J].高原气象, 1986, 5(4):367-372.]
[4]Shukla J. Dynamical predictability of monthly means[J]. Journal of the Atmospheric Sciences,1981,38:2 574-2 572.
[5]Miyakoda K, Sirutis J, Ploshay J. One month forecast experiment-without anomaly boundary forcings[J]. Monthly Weather Review,1986, 114: 2 363-2 401.
[6]Johansson , Baer F. Response of “Climate Drift” to statistical adjustment[C]//Matsuno T, ed. Journal of the Meteorological Society of Japan, Special Volume entitled Short and Medium Range Numerical Weather Prediction, 1987:785-803.
[7]Schemm J E, Faller A J. Statistical corrections to numerical predictions[J].Part IV. Monthly Weather Review,1986,114:2 402-2 417.
[8]Klein W H, Glahn H R. Forecasting local weather by means of model output statistics[J]. Bulletin of the American Meteorological Society,1974, 55: 1 217-1 227.
[9]Bennett A F, Leslie L M. Statistical correction of the Australian region primitive equation model[J]. Monthly Weather Review,1981, 109: 453-462.
[10]Johansson , Saha S. Simulation of systematic error effects and their reduction in a simple model of the atmosphere[J]. Monthly Weather Review,1989, 117: 1 658-1 675.
[11]Saha S. Response of the NMC MRF model to systematic error correction within integration[J]. Monthly Weather Review,1992, 120: 345-360.
[12]Boer G J. Systematic and random error in an extended-range forecasting experiment[J]. Monthly Weather Review,1993, 121: 173-188.
[13]Kanamitsu M, Saha S. Spectral budget analysis of the short-range forecast error of the NMC medium-range forecast model[J].Monthly Weather Review,1995,123:1 834-1 850.
[14]Kanamitsu M, Saha S. Systematic tendency error in budget calculations[J]. Monthly Weather Review,1996, 124: 1 145-1 160.
[15]Heckley W A. Systematic errors of the ECMWF operational forecast model in tropical regions[J]. Quarterly Journal of the Royal Meteorological Society,1985, 111: 709-738.
[16]Arpe K, Klinker E. Systematic errors of the ECMWF operational forecasting model in mid-latitudes[J].Quarterly Journal of the Royal Meteorological Society,1986, 112: 181-202.
[17]Klinker E, Capaldo M. Systematic errors in the baroclinic waves of the ECMWF model[J].Tellus A,1986, 38:215-235.
[18]Sausen R, Barthel K, Hasselmann K. Coupled ocean atmosphere models with flux correction[J]. Climate Dynamics,1988, 2: 145-163.
[19]Sausen R, Ponater M. Reducing the initial drift of a GCM[J].Beitraege zur Physik der Atmosphaere,1990, 63: 15-24.
[20]Klinker E, Sardeshmukh P D. The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements[J]. Journal of the Atmospheric Sciences,1992, 49: 608-627.
[21]Schubert S, Chang Y. An objective method for inferring sources of model error[J]. Monthly Weather Review,1996, 124: 325-340.
[22]Kaas E, Guldberg A, May W, et al. Using tendency errors to tune the parameterization of unresolved dynamical scale interactions in atmospheric general circulation models[J]. Tellus A,1999, 51: 612-629.
[23]Guldberg A, Kaas E, Déqué M, et al. Reduction of systematic errors by empirical model correction: Impact on seasonal prediction skill[J]. Tellus A,2005, 57:575-588.
[24]Machenhauer B, Kirchner I. Diagnosis of systematic initial tendency errors in the ECHAM AGCM using slow normal mode data assimilation of ECMWF reanalysis data[J]. CLIVAR Exchanges,2000, 18: 9-10.
[25]Yang Xiuqun, Anderson J L. Correction of systematic errors in coupled GCM forecasts[J].Journal of Climate,2000, 13: 2 072-2 085.
[26]Leith C E. Objective methods for weather prediction[J].Annual Review of Fluid Mechanics,1978, 10: 107-128.
[27]DelSole T, Hou A Y. Empirical correction of a dynamical model. Part I: Fundamental issues[J]. Monthly Weather Review,1999, 127: 2 533-2 545.
[28]Danforth C M, Kalnay E, Miyoshi T. Estimating and correcting global weather model error[J]. Monthly Weather Review,2007,135(2):281-299.
[29]Chen D, Cane M A, Zebiak S E, et al. Bias correction of an ocean-atmosphere coupled model[J]. Geophysical Research Letters,2000, 27: 2 585-2 588.
[30]Barreiro M, Chang P. A linear tendency correction technique for improving seasonal prediction of SST[J]. Geophysical Research Letters,2004, 31, L23209, doi:10.1029/2004GL021148.
[31]Krishnamurti T N, Sanjay J, Mitra A K, et al. Determination of forecast errors arising from different components of model physics and dynamics[J]. Monthly Weather Review, 2004, 132: 2 570-2 594.
[32]Ferranti L, Klinker E, Hollingsworth A, et al. Diagnosis of systematic forecast errors dependent on flow anomalies[J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128: 1 623-1 640.
[33]Roebber P J, Tsonis A A. A method to improve prediction of atmospheric flow transitions[J]. Journal of the Atmospheric Sciences, 2005, 62: 3 818-3 824.
[34]Hoke J E, Anthes R A. The initialization of numerical models by a dynamic initialization technique[J]. Monthly Weather Review, 1976, 103: 757-763.
[35]Luo J J, Masson S, Behera S, et al. Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts[J]. Journal of Climate, 2005,18:4 474-4 497.
[36]Haseler J. An investigation of the impact at middle and high latitudes of tropical forecast errors[R]. ECMWF Technical Report, 1982, 31: 1-42.
[37]Ferranti L, Palmer T N, Molteni F, et al. Tropical-extratropical interaction associated with the 30-60 day oscillation and its impact on medium and extended range prediction[J]. Journal of the Atmospheric Sciences,1990, 47: 2 177-2 199.
[38]Jeuken A B M, Siegmund P C, Heijboer L C. On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation[J].Journal of Geophysical Research, 1996, D12, 101: 16 939-16 950.
[39]Zou X, Navon I M, Le Dimet F X. An optimal nudging data assimilation scheme using parameter estimation[J]. Quarterly Journal of the Royal Meteorological Society,1992, 118: 1 163-1 186.
[40]Hamill T M, Whitaker J S. Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches[J]. Monthly Weather Review,2005, 133: 3 132-3 147.
[41]Barnett T P, Preisendorfer R. Origins and levels of monthly and seasonal forecast skill for United States surface air temperatures determined by canonical correlation analysis[J]. Monthly Weather Review,1987, 115: 1 825-1 850.
[42]Renwick J, Wallace J. Predictable anomaly patterns and the forecast skill of northern hemisphere wintertime 500-mb height fields[J]. Monthly Weather Review,1995, 123: 2 114-2 131.
[43]Smith T M, Livezey R E. GCM systematic error correction and specification of the seasonal mean Pacific-North America region atmosphere from global SSTs[J]. Journal of Climate,1999, 12: 273-288.
[44]Mo K C, Thiaw W M. Ensemble canonical correlation prediction of precipitation over the Sahel[J]. Geophysical Research Letters,2002, 29(12),1 570, doi:10.1029/2002GL015075.
[45]Feddersen H, Navarra A, Ward A N. Reduction of model systematic error by statistical correction for dynamical seasonal predictions[J]. Journal of Climate,1999, 12:1 974-1 989.
[46]Kang In-Sik, Lee June-Yi, Park Chung-Kyu. Potential predictability of summer mean precipitation in a dynamical seasonal prediction system with systematic error correction[J].Journal of Climate,2004, 17: 834-844.
[47]Lin Hai, Derome J, Brunet G. Correction of atmospheric dynamical seasonal forecasts using the leading ocean-forced spatial patterns[J].Geophysical Research Letters,2005, 32, L14804, doi:10.1029/2005GL023060.
[48]Tippett M K, Barnston A G, DeWitt D G, et al. Statistical correction of tropical Pacific sea surface temperature forecasts[J].Journal of Climate,2005, 18: 5 141-5 162.
[49]Qiu Chongjian, Chou Jifan. An analogue-dynamical method of weather forecasting[J]. Chinese Journal of Atmospheric Sciences,1989, 13(1): 22-28.[邱崇践,丑纪范. 天气预报的相似—动力方法[J]. 大气科学,1989,13(1): 22-28.]
[50]Huang Jianping, Wang Shaowu. The experiment of seasonal prediction using the analogy-dynamical model[J].Science in China(Series B),1992,35(2):207-216.[黄建平,王绍武. 相似—动力模式的季节预报试验[J]. 中国科学:B辑,1991,21(2):216-224.]
[51]Huang Jianping, Yi Yuhong, Wang Shaowu, et al. An analogue-dynamical long-range numerical weather prediction system incorporating historical evolution[J]. Quarterly Journal of the Royal Meteorological Society,1993, 119: 547-565.
[52]D'Andrea F, Vautard R. Reducing systematic errors by empirically correcting model errors[J]. Tellus A,2000, 52: 21-41.
[53]Qiu Chongjian, Chou Jifan. A new approach to improve the numerical weather prediction[J]. Science in China (Series B),1987, 17(8): 903-910.[邱崇践,丑纪范. 改进数值天气预报的一个新途径[J]. 中国科学:B辑,1987,17(8): 903-910.]
[54]Qiu Chongjian, Chou Jifan. A perturbation method of model recognition of numerical weather prediction[J]. Chinese Journal of Atmospheric Sciences,1988, 12(3): 225-232.[邱崇践,丑纪范. 预报模式识别的扰动方法[J]. 大气科学,1988,12(3): 225-232.]
[55]Qiu Chongjian, Chou Jifan. The method of optimizing parameterization in numerical prediction model[J].Science in China(Series B),1990, 20(2): 218-224. [邱崇践,丑纪范. 预报模式的参数优化方法[J]. 中国科学:B辑,1990,20(2): 218-224.]
[56]Aksoy A,Zhang F, Nielsen-Gammon J W. Ensemble-based simultaneous state and parameter estimation with MM5[J]. Geophysical Research Letters,2006, 33, L12801, doi:10.1029/2006GL026186.
[57]Zeng Qingcun, Zhang Banglin, Yuan Chongguang, et al. A note on some methods suitable for verifying and correcting the prediction of climate anomaly[J]. Advances in Atmospheric Sciences,1994, 11(2): 121-127.
[58]Wang Huijun, Zhou Guangqing, Zhao Yan. An effective method for correcting the seasonal-interannual prediction of summer climate anomaly[J]. Advances in Atmospheric Sciences,2000, 17: 234-240.
[59]Lang Xianmei. Theory and methodology of short-term climatic prediction and study on ensemble prediction experiment [D]. Beijing: Graduate School of the Chinese Academy of Sciences, 2003. [郎咸梅. 跨季度短期气候的模式预测理论、方法与集合预测试验研究[D]. 北京:中国科学院研究生院,2003.]
[60]Chen Hong, Lin Zhaohui. A correction method suitable for dynamical seasonal prediction[J]. Advances in Atmospheric Sciences,2006, 23: 425-430.
[61]Gong Jiandong. The study on conjoining statistical with dynamical method to improve monthly dynamical extend-range forecast[D]. Lanzhou: Lanzhou University, 1999.[龚建东. 统计与动力相结合改进月动力延伸预报的研究[D]. 兰州:兰州大学,1999.]
[62]Chen Bomin, Ji Liren, Yang Peicai, et al. Systematic errors of zonal-mean flow in dynamical monthly prediction and its improvement[J]. Advances in Atmospheric Sciences,2003, 20: 17-27.
[63]Zhang Daomin, Ji Liren. A study of information on the extraction to reduce errors in dynamic extended (monthly) numerical weather prediction[J].Chinese Journal of Atmospheric Sciences,2001, 25: 778-786.[张道民,纪立人. 动力延伸(月)数值天气预报中的信息提取和减小误差试验[J]. 大气科学,2001,25: 778-786.]
[64]Lorenz E N. A study of the predictability of a 28-variable atmospheric model[J]. Tellus,1965, 17: 321-333.
[65]Epstein E S. Stochastic dynamic prediction[J]. Tellus,1969, 21: 739-759.
[66]Leith C E. Theoretical skill of Monte Carlo forecasts[J]. Monthly Weather Review,1974, 102: 409-418.
[67]Hollingsworth A. An experiment in Monte-Carlo forecasting procedure[R]. ECMWF workshop on stochastic dynamic forecasting, ECMWF, Grande-Bretagne, 1980:65-97.
[68]Palmer T N, Mureau R, Molteni F. The Monte Carlo forecast[J].Weather,1990, 45: 198-207.
[69]Hoffman R N, Kalnay E. Lagged average forecasting, an alternative to Monte Carlo forecasting[J]. Tellus,1983, 35: 100-118.
[70]Molteni F, Cubasch U, Tibaldi S. Experimental monthly forecasts at ECMWF using the lagged average forecasting technique[C]//Proceedings of the First WMO Workshop of the Diagnosis Prediction of Monthly and Seasonal Atmospheric Variations over the Global,1985:598-607.
[71]Dalcher A, Kalnay E, Hoffman R N. Medium range lagged average forecasts[J]. Monthly Weather Review,1988, 116: 402-416.
[72]BrankovicC, Palmer T N, Molteni F, et al. Extended-range predictions with ECMWF models: Time-lagged ensemble forecasting[J]. Quarterly Journal of the Royal Meteorological Society,1990, 116: 867-912.
[73]Molteni F, Palmer T N. Predictability and finite-time instability of the northern winter circulation[J]. Quarterly Journal of the Royal Meteorological Society,1993, 119: 269-298.
[74]Mureau R, Moteni F, Palmer T N. Ensemble prediction using dynamically conditioned perturbations[J]. Quarterly Journal of the Royal Meteorological Society,1993, 119: 299-324.
[75]Molteni F, Buizza R, Palmer T N, et al. The ECMWF ensemble prediction system: Methodology and validation[J]. Quarterly Journal of the Royal Meteorological Society,1996, 122: 73-119.
[76]Buizza R.Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF ensemble prediction system[J]. Monthly Weather Review,1997, 125: 99-119.
[77]Barkmeijer J, Buizza R, Palmer T N. 3D-Var Hessian singular vectors and their potential use in the ECMWF Ensemble Prediction System[J]. Quarterly Journal of the Royal Meteorological Society,1999, 125: 2 333-2 351.
[78]Ehrendorfer M, Tribbia J J. Optimal prediction of forecast error covariances through singular vectors[J]. Journal of the Atmospheric Sciences,1997, 54: 286-313.
[79]Tracton M S, Kalnay E. Operational ensemble prediction at the National Meteorological Center: Practical aspects[J]. Weather and Forecasting,1993, 8: 5-10.
[80]Toth Z, Kalnay E. Ensemble forecasting at NMC: The generation of perturbations[J].Bulletin of the American Meteorological Society,1993, 74: 2 317-2 330.
[81]Toth Z, Kalnay E. Ensemble forecasting at NCEP and the breading method[J]. Monthly Weather Review,1997, 125: 3 297-3 319.
[82]Houtekamer P L, Derome J. Methods for ensemble prediction[J]. Monthly Weather Review,1995, 123: 2 181-2 196.
[83]Houtekamer P L, Lefaivre L, Derome J, et al. A system simulation approach to ensemble prediction[J]. Monthly Weather Review,1996, 124: 1 225-1 242.
[84]Gong Jiandong, Li Weijing, Chou Jifan. Forming proper ensemble forecast initial members with four dimensional variational data assimilation method[J]. Chinese Science Bulletin,1999, 44(10): 1 113-1 116. [龚建东,李维京,丑纪范. 集合预报最优初值形成的四维变分同化方法[J]. 科学通报,1999,44(10): 1 113-1 116.]
[85]Buizza R, Miller M, Palmer T N. Stochastic simulation of model uncertainties[J]. Quarterly Journal of the Royal Meteorological Society,1999, 125: 2 887-2 908.
[86]Stensrud D J, Bao J W, Warner T T. Using initial condition and model physics perturbations in short-range ensembles[J]. Monthly Weather Review,2000, 128: 2 077-2 107.
[87]Nutter P, Xue Ming, Stensrud D. Application of lateral boundary condition perturbations to help restore dispersion in limited-area ensemble forecasts[J]. Monthly Weather Review,2004,132:2 378-2 390.
[88]Krishnamurti T N, Kishtawal C M, LaRow T E, et al. Improved weather and seasonal climate forecasts from multimodel superensemble[J]. Science,1999, 285:1 548-1 550.
[89]Krishnamurti T N, Surendran S, Shin D W, et al. Real-time multianalysis-multimodel superensemble forecasts of precipitation using TRMM and SSM/I products[J]. Monthly Weather Review,2001, 129: 2 861-2 883.
[90]Palmer T N, BrankovicC, Richardson D S. A probability and decision-model analysis of PROVOST seasonal multi-model ensemble integrations[J]. Quarterly Journal of the Royal Meteorological Society,2000, 126: 2 013-2 034.
[91]Palmer T N, Alessandri A, Andersen U, et al. Development of a European multi-model ensemble system for seasonal-to-interannual prediction (DEMETER) [J]. Bulletin of the American Meteorological Society,2004, 85: 853-872.
[92]Kang In-Sik, Yoo Jin-Ho. Examination of multi-model ensemble seasonal prediction methods using a simple climate system[J]. Climate Dynamics,2006, 26: 285-294.
[93]Zhu Yuejian. Ensemble forecast: A new approach to uncertainty and predictability[J]. Advances in Atmospheric Sciences, 2005, 22: 781-788.
[94]Kalnay E, Dalcher A. Forecasting forecast skill[J]. Monthly Weather Review,1987, 115: 349-356.
[95]Palmer T N, Tibaldi S. On the prediction of forecast skill[J]. Monthly Weather Review, 1988, 116: 2 453-2 480.
[96]Whitaker J S, Loughe A F. The relationship between ensemble spread and ensemble mean skill[J]. Monthly Weather Review, 1998, 126: 3 292-3 302.
[97]Palmer T N. Predicting uncertainty in forecasts of weather and climate[J]. Reports on Progress in Physics, 2000, 63: 71-116.
[98]Anderson J L, Stern W F. Evaluating the potential predictive utility of Ensemble forecasts[J]. Journal of Climate,1996, 9: 260-269.
[99]Buizza R, Petroliagis T, Palmer T N, et al. Impact of model resolution and ensemble size on the performance of an Ensemble prediction system[J]. Quarterly Journal of the Royal Meteorological Society,1998, 124: 1 935-1 960.
[100]Gu Zhenchao. On the equivalency of formulation of weather forecasting as an initial value problem and as an “evolution” problem[J].Acta Meteorologica Sinica,1958,29:93-98.[顾震潮. 作为初值问题的天气形势预报与由地面天气历史演变作预报的等值性[J]. 气象学报,1958,29: 93-98.]
[101]Gu Zhenchao. On the utilization of past data in numerical weather forecasting[J]. Acta Meteorologica Sinica,1958, 29(3): 176-184.[顾震潮. 天气数值预报中过去资料的使用问题[J].气象学报,1958,29(3): 176-184.]
[102]Chou Jifan. A problem of using past data in numerical weather forecasting[J]. Scientia Sinica,1974, 17(6):635-644.[丑纪范.天气数值预报中使用过去资料的问题[J].中国科学,1974,17(6): 635-644.]
[103]Gong Jiandong, Chou Jifan. The theories and methods of utilizing historical data in numerical weather forecast[J].Plateau Meteorology,1999, 18(3): 392-399.[龚建东,丑纪范. 论过去资料在数值天气预报中使用的理论和方法[J]. 高原气象,1999,18(3): 392-399.]
[104]Zheng Qinglin, Tu Hsingyuan. A new numerical weather prediction model, utilizing multiple-instant observation[J]. Scientia Sinica,1973, 16(2): 289-297.[郑庆林,杜行远. 使用多时刻观测资料的数值天气预报新模式[J]. 中国科学,1973,16(2): 289-297.]
[105]Bao Ming, Ni Yunqi, Chou Jifan. The experiment of monthly mean circulation prediction using the analogy-dynamical model[J].Chinese Science Bulletin,2004, 49(12): 1 296-1 300.[鲍名,倪允琪,丑纪范. 相似—动力模式的月平均环流预报试验[J]. 科学通报,2004,49(11): 1 112-1 115.]
[106]Zhang Banglin, Chou Jifan. Applications of EOFs to numerical climatic simulation[J].Science in China (Series B),1991, 21(4): 442-448.[张邦林,丑纪范. 经验正交函数在数值气候模拟中的应用[J]. 中国科学:B辑,1991,21(4): 442-448.]
[107]Zhang Peiqun, Chou Jifan. A method improving monthly extended range forecasting[J].Plateau Meteorology,1997, 16(4): 376-388.[张培群,丑纪范. 改进月延伸预报的一种方法[J]. 高原气象,1997,16(4): 376-388.]
[108]Cao Hongxing. Self-memorization equation in atmospheric motion[J].Science in China (Series B),1993, 36(7): 845-855. [曹鸿兴. 大气运动的自忆性方程[J]. 中国科学:B辑,1993,23(1): 104-112.]
[109]Gu Xiangqian. A spectral model based on atmospheric self-memorization principle[J]. Chinese Science Bulletin,1998, 43(20): 1 692-1 702.[谷湘潜. 一个基于大气自忆原理的谱模式[J]. 科学通报,1998,43(1): 1-9.]
[110]Feng G L, Cao H X, Dong W J, et al. A new differential scheme with multi-levels[J]. Chinese Physics,2001, 10: 1 004-1 010.
[111]Klein W H, Lewis B M, Enger I. Objective prediction of five-day mean temperatures during winter[J].Journal of Meteorology,1959, 16: 672-682.
[112]Klein W H. Computer prediction of precipitation probability in the United States[J]. Journal of Applied Meteorology,1971, 10: 903-915.
[113]Glahn H R,Lowry D A. The use of model output statistics (MOS) in objective weather forecasting[J]. Journal of Applied Meteorology, 1972, 11: 1 203-1 211.
[114]Wilby R L,Wigley T M L. Downscaling general circulation model output: A review of methods and limitations[J]. Progress in Physical Geography,1997, 21: 530-548.
[115]Murphy J. An evaluation of statistical and dynamical techniques for downscaling local climate[J].Journal of Climate,1999, 12: 2 256-2 284.
[116]Widmann M, Bretherton C, SalathE P Jr. Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor[J]. Journal of Climate,2003,16:799-816.
[117]Feddersen H, Andersen U. A method for statistical downscaling of seasonal ensemble predictions[J]. Tellus A,2005, 57(3):398-408.
[118]Van den Dool H M. Long-range weather forecast through numerical and empirical methods[J]. Dynamics of Atmospheres and Oceans,1994,20:247-270.
[119]Sarda J, Plaut G, Pires C, et al. Statistical and dynamical long-range atmospheric forecasts: Experimental comparison and hybridization[J]. Tellus A,1996,48: 518-537.
[120]Mo R, Straus D M. Statistical dynamical seasonal prediction based on principal component regression of GCM ensemble integrations[J]. Monthly Weather Review,2002, 130: 2 167-2 187.
[121]Marzban C. Neural networks for postprocessing model output: ARPS[J].Monthly Weather Review,2003,131:1 103-1 111.
[122]Tippett M K, Goddard L, Barnston A G. Statistical-dynamical seasonal forecasts of Central-Southwest Asian winter precipitation[J]. Journal of Climate,2005, 18: 1 831-1 843.
[123]Chou Jifan, Xu Ming. Advancement and prospect of short-term numerical climate prediction[J].Chinese Science Bulletin,2001, 46(18): 1 497-1 502.[丑纪范,徐明. 短期气候数值预测的进展和前景[J]. 科学通报,2001,46(11): 890-895.]
[124]Ren Hongli, Zhang Peiqun, Guo Bingrong, et al. Dynamical model of subtropical high ridge-line section and numerical simulations with Its simplified scheme[J].Chinese Journal of Atmospheric Sciences,2005,29:71-78.[任宏利,张培群,郭秉荣,等.预报副高脊面变化的动力模型及其简化数值试验[J]. 大气科学,2005,29: 71-78.]
[125]Nicholls N. Long-range weather forecasting: Recent research[Z]. WMO in Long-range forecasting research publication series, 1984.
[126]Chou Jifan. Some problems of long-range numerical weather prediction[C]//Collection of Middle and Long-Range Hydrometeorological Prediction. Beijing: China WaterPower Press, 1979:216-221.[丑纪范. 长期数值天气预报的若干问题[C]//中长期水文气象预报文集.北京:水利电力出版社,1979:216-221.]
[127]Ren Hongli, Chou Jifan. Analogue correction method of errors by combining both statistical and dynamical methods together[J].Acta Meteorologica Sinica,2006, 20(3): 367-373.[任宏利,丑纪范. 统计—动力相结合的相似误差订正法[J].气象学报,2005,63(6): 988-993.]
[128]Ren Hongli, Chou Jifan. Introducing the updating of multi-reference states into dynamical analogue prediction[J].Acta Meteorologica Sinica,2006, 64(3): 315-324.[任宏利,丑纪范. 在动力相似预报中引入多个参考态的更新[J].气象学报,2006,64(3): 315-324.]
[129]Gao Li, Ren Hongli, Li Jianping, et al. Analogue correction method of errors and its application to numerical weather prediction[J].Chinese Physics,2006, 15(4): 882-889.
[130]Ren Hongli, Zhang Peiqun, Li Weijing, et al. A new method of dynamical analogue prediction based on multi-reference-state updating and its application[J].Acta Physica Sinica,2006, 55(8): 4 388-4 396.[任宏利,张培群,李维京,等.基于多个参考态更新的动力相似预报方法及应用[J]. 物理学报,2006,55(8): 4 388-4 396.]
[131]Chou Jifan, Ren Hongli. Numerical weather prediction—Necessity and feasibility of an alternative methodology[J].Quarterly Journal of Applied Meteorology,2006, 10(2): 240-244.[丑纪范,任宏利. 数值天气预报——另类途径的必要性和可行性[J]. 应用气象学报,2006,10(2): 240-244.]
/
〈 |
|
〉 |