综述与评述

近年来中等复杂程度地球系统模式的研究进展

  • 尹崇华 ,
  • 石正国 ,
  • 延晓冬
展开
  • 1.中国科学院大气物理研究所东亚区域气候—环境重点实验室,北京 100029;2.中国科学院研究生院,北京 100039
尹崇华(1975-),男,吉林省吉林市人,硕士研究生,主要从事全球变化与中等复杂程度地球系统模式的开发与应用.E-mail:yinch@tea.ac.cn

收稿日期: 2006-07-24

  修回日期: 2007-01-11

  网络出版日期: 2007-03-10

基金资助

国家重点基础研究发展计划项目“北方干旱化与人类适应”(编号: 2006CB400500);国家自然科学基金项目“基于个体的陆面动态植被模式”(编号:40675048)资助.

Progress of the Study of Earth System of Models of Intermediate Complexity in Recent Years

Expand
  • 1.Key Laboratory of Regional Climate-Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; 2.Gruduate University of Chinese Academy of Sciences, Beijing 100039, China

Received date: 2006-07-24

  Revised date: 2007-01-11

  Online published: 2007-03-10

摘要

近十几年来,地球系统模式领域活跃着一类新兴的模式——中等复杂程度的地球系统模式(EMICs),EMICs以其对计算能力的较低要求和对地球系统的较为完备的描述,使其应用几乎覆盖了简单模式和大气环流模式(CGCMs)的所有研究领域,特别在长期气候变化的模拟方面展现了得天独厚的优势,从而使得在长期气候变化的背景下研究近代气候变化更具现实意义。EMICs已经成为模拟地球系统的有力工具,为目前的CGCMs模拟提供了必要的补充,在简单模式与CGCMs之间架起了一座桥梁。首先回顾了中等复杂程度地球系统模式(EMICs)的发展现状,结合近年来国内外发表的文献探讨了EMICs的基本组成、应用领域,并对EMICs未来的发展趋势进行了预测。

本文引用格式

尹崇华 , 石正国 , 延晓冬 . 近年来中等复杂程度地球系统模式的研究进展[J]. 地球科学进展, 2007 , 22(3) : 290 -296 . DOI: 10.11867/j.issn.1001-8166.2007.03.0290

Abstract

In recent decades, except for conceptual and three-dimensional comprehensive models (CGCMs), Earth system models of intermediate complexity (EMICs) as a new type of models occur in the scope of the Earth system models. EMICs simulate the interactions among several or even all components of the Earth system explicitly, albeit in a more reduced, i.e., more parameterized form. Thus EMICs describe the Earth system in an almost complete manner. Just due to their Simplicities, EMICs need more low Computation cost. Therefore, EMICs can not carry out only long-term simulations over 10 000 years, but a broad range of sensitivity experiments. EMICs have already become an integrated and powerful assessment tool for environmental studies, and bridge the gap between present CGCMs and conceptual models. In this review paper, status and improvements of EMICs are reviewed firstly. Then based on the domestic and foreign published literatures, the basic composition and application domain of EMICs in recent years are discussed. Finally, the future development trend of EMICs is forecasted.

参考文献

[1]Kraus H.Die Atmosphere der Erde[M].Viewing, Braunschweig,2000.
[2]Alcamo J. IMAGE 2.0: Integrated modeling of global climate change[J].Specical Issue Water, Air, Soil, Pollution,1994, 76(1/2):13-21.
[3]Schellnhuber H J.“Earth system” analysis and the second Copernican revolution[J]. Nature,1999,402:C19-C28.
[4]Grassl H. Status and improvements of coupled general circulation models[J]. Science, 2000,288:1 991-1 997.
[5]Claussen M . Earth system models[C]//Ehlers E, Krafit T,eds. Understanding the Earth System: Compartments, Processes and interactions.Heidelberg, Berlin, New York:Springer, 2000.
[6]Brovkin V,Ganopolski A,Svirezhev Y. A continuous climate-vegetation classification for use in climate-biosphere studies[J].Ecological Modelling,1997,101:251-261.
[7]Pacanowski R C, Griffies S M. The MOM-3 manual[R]. Technology Report,1999,4.
[8]Petoukhov V, Ganopolski A, Brovkin V,et al. CLIMBER- 2: A climate system model of intermediate complexity. Part I: Model description and perform-ance for present climate[J].Climate Dynamics,2000, 16:1-17.
[9]Petoukhov V, Ganopolski A, Claussen M. POTSDAM-a set of atmosphere statistical-dynamical models: Theoretical background[R]. PIK Report, 2003,81:136.
[10]Wang Z. Two climatic states and feedbacks on thermohaline circulation in an Earth system model of intermediate complexity[J].Climate Dynamics,2005, 25: 299-314, doi: 10.1007/s00382-05-0033-4.
[11]Marsh R J, Yool A, Lenton T M, et al. Bistability of the thermohaline circulation identified through comprehensive 2-parameter sweeps of an efficient climate model [J].Climate Dynamics, 2004,23:761-777.
[12]Stocker T F, Schmittner A. Influence of CO2 emission rates on the stability of the thermohaline circulation[J].Nature,1997,388:862-865.
[13]Papa B, Mysak L A, Wang Z. Intermittent ice sheet discharge events in northeastern North America during the last glacial period[J].Climate Dynamics,2005,26:201-216,DOI:10.1007/s00382-005-0078-4.
[14]Lehman S J, Wright D G, Stocker T F. Transport of freshwater into the deep ocean by the conveyor[C]//Peltier W R, ed. Ice in the Climate System. NATO ASI Ser,1993,12(I):187-209. 
[15]Milankovitch M. Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen[C]//Koppen W, Geige R, eds.Handbuch der Klimatologie, Berlin: Gebruder Borntraeger,1930.
[16]Gall′ee H, Ypersele J P, Fichefet T, et al. Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model. II Response to insolation and CO2 variation[J]. Journal of Geophysical Research,1992, 97(15):713-715.
[17]Berger A, Loutre M F, Gall′ee H. Sensitivity of the LLN climate model to the astronomical and CO2 forcings over the last 200 kyr[J].Climate Dynamics,1998,14:615-629.
[18]Loutre M F, Berger A. No glacial-interglacial cycle in the ice volume simulated under a constant astronomical forcing and a variable CO2[J].Geophysical Research Letters,2000,27(6):783-786.
[19]Meissner K J, Weaver A J, Matthews H D, et al. The role of land surface dynamics in glacial inception: A study with the UVic Earth System Model[J].Climate Dynamics,2003, 21:515-537, doi: 10.1007/s00382-003-0352-2.
[20]Kageyama M, Charbit S, Ritz C, et al. Quantifying ice-sheet feedbacks during the last glacial inception[J].Geophysical Research Letters,2004,31,L24203,doi:10.1029/2004GL021339.
[21]Yoshimori M, Weaver A J, Marshall S J, et al. Glacial Terminations: Sensitivity to orbital and CO2 forcing in a coupled climate system model [J].Climate Dynamics,2001, 17:571-588.
[22]Loutre M F, Berger A. Future climatic changes: Are we entering an exceptionally long Interglacial? [J].Climatic Change,2000, 46:61-90.
[23]Claussen M, Brovkin V, Petoukhov V, et al. Biogeophysical versus biogeochemical feedbacks of large-scale land-cover change[J]. Geophysical Research Letters,2001, 26(6):1 011-1 014.
[24]Claussen M, Kubatzki C, Brovkin V, et al. Simulation of an abrupt change in Saharan vegetation in the mid-Holocene[J]. Geophysical Research Letters,1999,24(14):2 037-2 040.
[25]Wang Y, Mysak L A , Wang Z,et al. The greening of the McGill Paleoclimate Model. Part II: Simulation of natural millennial-scale variability during the Holocene[J].Climate Dynamics,2005, 24: 481-496.
[26]Brovkin V, Claussen M, Driesschaert E, et al. Biogeophysical effects of historical land cover changes simulated by six Earth system models of intermediate complexity[J]. Climate Dynamics,2006, 26(6):587-600,Doi: 10.1007/s00382-005-0092-6.
[27]Bertrand C,Loutre M F,Crucifix  M, et al.Climate of the last millennium:A sensitivity study[J] .Tellus,2002,54A:221-244.
[28]Bauer E,Claussen M,Brovkin V. Assessing climate forcings of the Earth. system for the past millennium[J]. Geophysical Research Letters,2003,30(6),doi:10.1029/2002GL016639.
[29]Wang Z, Mysak L A .Glacial abrupt climate changes and Dansgaard-Oeschger oscillations in a coupled climate model[J]. Paleoceanography, 2006, 21: PA2001. 
[30]Petoukhov V, Claussen M, Berger A, et al. EMIC intercomparison project (EMIP-CO2): Comparative analysis of EMIC simulations of current climate and equilibrium and transient responses to atmospheric CO2 doubling[J]. Climate Dynamics,2005, 25: 363-385, doi: 10.1007/s00382-005-0042-3.
[31]Brovkin V, Claussen M, Petoukhov V, et al. On the stability of the atmosphere-vegetation system in the Sahara/Sahel region[J].Journal of Geophysical Research,1998, 103(D24):3 113-3 124.

文章导航

/