地球科学进展 ›› 2010, Vol. 25 ›› Issue (4): 381 -390. doi: 10.11867/j.issn.1001-8166.2010.04.0381

研究论文 上一篇    下一篇

埋藏历史对碳酸盐溶解—沉淀的影响——以四川盆地东北部三叠系飞仙关组和塔里木盆地北部奥陶系为例
黄思静,龚业超,黄可可,佟宏鹏   
  1. 成都理工大学油气藏地质及开发工程国家重点实验室,沉积地质研究院,四川  成都  610059
  • 收稿日期:2009-09-22 修回日期:2010-01-31 出版日期:2010-04-10
  • 通讯作者: 黄思静 E-mail:hsj@cdut.edu.cn
  • 基金资助:

    国家自然科学基金项目“四川盆地东北部三叠系飞仙关组优质白云岩储层形成的成岩机制”(编号:40839908)资助.  

The Influence of Burial History on Carbonate Dissolution and Precipitation
—A Case Study from Feixianguan Formation of Triassic, NE Sichuan and Ordovician Carbonate of Northern Tarim Basin

Huang Sijing,Gong Yechao,Huang Keke,Tong Hongpeng   

  1. State Key Laboratory of Oil/Gas Reservoir Geology and Exploitation, Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
  • Received:2009-09-22 Revised:2010-01-31 Online:2010-04-10 Published:2010-04-10

埋藏成岩过程中碳酸盐的溶解与沉淀强烈控制着深埋藏地层中碳酸盐岩储层质量,与之有关的地质过程是人们多年来不懈研究的热点领域。热流体沿断裂向上运移所造成的碳酸盐溶解成为近年人们普遍认可的模式,但这不能圆满解释大量存在的不与断裂伴生的深埋藏碳酸盐的溶解机制。基于四川盆地东北部和塔里木盆地北部深埋藏碳酸盐溶解与沉淀机制的研究,认为埋藏过程中盆地的沉降与抬升是碳酸盐溶解与沉淀以及次生孔隙发育的另一重要机制,在改变流体对碳酸盐饱和状况方面具有和热流体沿断裂向上运移相同的重要性。研究表明:与川东北飞仙关组类似的埋藏历史更有利于深埋藏成岩过程中碳酸盐的溶解,主要特点是当前埋藏深度不是最大埋藏深度,在最大埋藏深度附近发生热化学硫酸盐还原作用,其后盆地持续抬升造成温度降低和碳酸盐溶解,与之有关的次生孔隙形成所造成的岩石力学性质的变化与上覆载荷减小可以得到平衡,次生孔隙得以保存,岩石储层质量改善|塔里木盆地北部的奥陶系埋藏历史不利于深埋藏成岩过程碳酸盐的溶解,主要特点是当前埋藏深度是最大埋藏深度,古喀斯特发生之后盆地持续沉降造成温度升高和碳酸盐沉淀,并与上覆载荷的增加同步发生,结果是孔隙的封堵、岩石的致密化和储层质量的变差。

 The dissolution and precipitation of carbonate in buried diagenesis extensively control the quality of carbonate reservoir. The related geological process has been the research focus for years. The hydrothermal fluids migrating upwards from deeper strata along faults can cause the dissolution of carbonate. However, this model can not fully explain the dissolution mechanisms of extensively existed carbonate which are not associated with fault. Based on the study of the dissolution and precipitation mechanisms of deep buried carbonate in Northeast Sichuan Basin and Northern Tarim Basin, we propose that the subsidence and uplift of basin during buried process is another important mechanism for the dissolution and precipitation of carbonate and the formation of secondary porosity. The changing of the fluids saturation to carbonate is as important as the upward migration of hydrothermal fluids along fault. Our study reveals that the burial history of Feixianguan Formation, NE Sichuan is more favorable to the dissolution of carbonate during burial diagenesis. The main feature is that the present burial depth is not the deepest buried depth. TSR occurred at the deepest buried depth. Then, the continuous uplift of the basin causes the decrease of the temperature and the dissolution of carbonate. The formation of related secondary porosity results in the changing of rock mechanics, which can be balanced out with the decreasing overlying load. Therefore the secondary porosity can be preserved and the reservoir quality can be improved. On the contrary, Ordovician burial history in Northern Tarim Basin is not favorable to the dissolution of carbonate in buried diagenesis. The main feature is that the present buried depth is the deepest burial depth. The continuous subsidence of the basin after paleokarst could lead to the decrease of the temperature and the precipitation of carbonate, combined with the increase of overlying load that result in the compacting, the quality of reservoir would be severe degradated.

中图分类号: 

[1] Davies G R, Smith J L B. Structurally controlled hydrothermal dolomite reservoir facies: An overview[J]. AAPG Bulletin,2006, 90(11): 1 641-1 690.
[2] Lonnee J, Machel H G. Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, British Columbia, Canada[J].AAPG Bulletin,2006,90: 1 739-1 761.
[3] Zhu Guangyou, Zhang Shuichang, Liang Yingbo, et al. Isotopic evidence of TSR origin for natural gas bearing high H2S contents within the Feixianguan Formation of the northeastern Sichuan basin, southwestern China[J].Science in China (Series D),2005, 48(11): 1 960-1 971.[朱光有, 张水昌, 梁英波, 等. 川东北地区飞仙关组高含H2S天然气TSR成因的同位素证据[J]. 中国科学:D辑, 2005, 35(11):1 037-1 046.]
[4] Zhu Guangyou, Zhang Shuichang, Liang Yingbo, et al. Dissolution and alteration of the deep carbonate reservoirs by TSR—An important type of deep buried high quality carbonate reservoirs in Sichuan basin[J].Acta Petrologica Sinica,2006, 22(8):2 182-2 194.[朱光有, 张水昌, 梁英波, 等. TSR对深部碳酸盐岩储层的溶蚀改造——四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报, 2006, 22(8): 2 182-2 194.]
[5] Ma Yongsheng, Guo Tonglou, Zhu Guangyou, et al. Simulated experiment evidences of the corrosion and reform actions of H2S to carbonate reservoirs—An example of Feixianguan Formation, east Sichuan[J].Chinese Science Bulletin,2007, 52(suppl. I): 178-183.[马永生, 郭彤楼, 朱光有, 等. 硫化氢对碳酸盐储层溶蚀改造作用的模拟实验证据——以川东飞仙关组为例[J]. 科学通报, 2007, 52(增刊I): 136-141.] 
[6] Ma Yongsheng, Guo Tonglou, Zhao Xuefeng, et al. The formation mechanism of high-quality dolomite reservoir in the deep of Puguang Gas Field[J].Science in China (Series D),2008, 51(suppl. I): 53-64.[马永生, 郭彤楼, 赵雪凤, 等. 普光气田深部优质白云岩储层形成机制[J]. 中国科学:D辑,2007, 37(增刊Ⅱ): 43-52.] 
[7] Wang Yigang, Wen Yingchu, Hong Haitao, et al. Diagenesis of Triassic Feixianguan Formation in Sichuan Basin, Southwest China[J].Acta Sedimentologica Sinica,2007, 25(6): 831-839.[王一刚, 文应初, 洪海涛, 等. 四川盆地三叠系飞仙关组气藏储层成岩作用研究[J]. 沉积学报, 2007, 25(6): 831-839.] 
[8] Huang Sijing, Qing Hairuo, Hu Zuowei, et al. Closed-system dolomitization and the significance for petroleum and economic geology—An example from Feixianguan carbonates, Triassic NE Sichuan basin of China[J]. Acta Petrologica Sinica,2007, 23(11): 2 955-2 962.[黄思静, Qing Hairuo, 胡作维, 等. 封闭系统中的白云石化作用及其石油地质学和矿床学意义——以四川盆地东北部三叠系飞仙关组碳酸盐岩为例[J]. 岩石学报, 2007, 23(11): 2 955-2 962.]
[9] Huang Sijing, Wang Chunmei, Huang Peipei, et al. Scientific research frontiers and considerable questions of carbonate diagenesis[J]. Journal of Chengdu University of Technology, 2008, 35(1): 1-10.[黄思静, 王春梅, 黄培培, 等. 碳酸盐成岩作用的研究前沿和值得思考的问题[J]. 成都理工大学学报:自然科学版, 2008, 35(1):1-10.] 
[10] Huang Sijing, Qing Hairuo, Hu Zuowei, et al. The diagenesis and dolomitization of the Feixianguan carbonates of Triassic in NE Sichuan Basin: An overview[J]. Advances in Earth Science,2007, 22(5):495-503.[黄思静, Qing Hairuo,胡作维,等.四川盆地东北部三叠系水仙关组碳酸盐岩成岩作用和白云岩成因的研究现状和存在问题[J]. 地球科学进展,2007, 22(5):495-503.]
[11] Huang Sijing, Huang Keke, Zhang Xuehua, et al. Chemical Thermodynamics foundation of Retrograde Solubility for carbonate—Solution media related to H2S[J]. Acta Sedimentologica Sinica, 2010, 28: 1-9.[黄思静, 黄可可, 张雪花, 等. 碳酸盐倒退溶解模式的化学热力学基础——与H2S和CO2有关的溶解介质及其对比[J]. 沉积学报, 2010, 28: 1-9.]
[12] Huang Sijing, Sun Wei, Huang Peipei, et al. Chemical thermodynamics foundation of retrograde solubility for carbonate—Solution media related to CO2[J]. Journal of Chengdu University of Technology,2009, 36(5): 457-464.[黄思静, 孙伟, 黄培培, 等. 碳酸盐倒退溶解模式的化学热力学基础——与CO2有关的溶解介质[J]. 成都理工大学学报:自然科学版, 2009, 36(5): 457-464.] 
[13] Huang Keke, Huang Sijing, Tong Hongpeng, et al. Thermodynamic simulation of carbonate-carbon dioxide equilibrium system during diagenetic processes[J]. Acta Petrologica Sinica, 2009, 25(10): 2 417-2 424.[黄可可, 黄思静, 佟宏鹏, 等. 成岩过程中碳酸盐——二氧化碳平衡体系的热力学模拟[J]. 岩石学报, 2009, 25(10): 2 417-2 424.]
[14] Machel H G. Bacterial and thermochemical sulfate reduction in diagenetic settings-old and new insights[J]. Sedimentary Geology,2001, 140: 143-175.
[15] Xie Zengye. Study on the Mechanism and the Pool-forming Model of Oilitic Gas Reservoir at Feixianguan Formation in Northeast Area of Sichuan Basin\[D\]. Beijing: The Chinese University of Geology, 2003: 131.[谢增业. 川东地区下三叠统飞仙关组鲕滩气藏成藏机理及成藏模式研究[D]. 北京:中国地质大学, 2003: 131.] 
[16] Ye Desheng, Wang Genchang, Lin Zhongmin, et al. Cambrian-Ordovician carbonate characteristics and prospect of oil and gas in Northern Tarim Basin[M]. Chengdu: Sichuan University Press, 2000: 88-147.[叶德胜, 王根长, 林忠民, 等. 塔里木盆地北部寒武—奥陶系碳酸盐岩特征及油气远景[M]. 成都: 四川大学出版社, 2000: 88-147.] 
[17] Huang Sijing, Huang Keke, Tong Hongpeng, et al. Origin of CO2 in natural gas from the Feixianguan Formation of Triassic, Northeast Sichuan Basin[J]. Science in China (Series D),2010, 40(in press).[黄思静, 黄可可, 佟宏鹏, 等. 川东北飞仙关组热化学硫酸盐还原反应产生的CO2 去了哪里——兼论埋藏成岩过程中碳酸盐溶解与沉淀机制[J]. 中国科学:D辑, 2010, 40(印刷中).]
[18] Hao F, Guo T L, Zhu Y M, et al. Evidence for multiple stages of oil cracking and sulfate reduction in the Puguang gas field, Sichuan Basin, China[J]. AAPG Bulletin, 2008, 92(5): 611-637.
[19] Huang Sijing, Mao Xiaodong, Zhang Meng, et al. The material base and buried diagenesis of deep Karst in Cambrian-Ordovician in the Tahe oilfield, Tarim Basin\[R\].Chengdu: Chengdu University of Techonology Archive,2009.[黄思静, 毛晓冬, 张萌, 等. 塔里木盆地塔河油田寒武—奥陶系深埋岩溶的物质基础与埋藏成岩作用[R].成都:成都理工大学档案馆, 2009.] 
[20] Zhang LG. The Application of Isotope in Geoscience[M]. Xi′an: Shaanxi Science and Technology, 1985.[张理刚. 稳定同位素有地质科学中的应用[M]. 西安: 陕西科学技术出版社, 1985.]
[21] Ren Jianguo, Huang Yipu, Fang Zhishan, et al. Oxygen and hydrogen isotope composition of meteoric water in the tropical West Pacific Ocean[J].Acta Oceanologica Sinica,2000, 22(5): 60-64.[任建国, 黄奕普, 方志山, 等. 热带西太平洋雨水的氢氧同位素组成[J]. 海洋学报, 2000, 22(5): 60-64.] 
[22] Veizer J, Ala D, Azmy K, et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater[J].Chemical Geology,1999, 161: 59-88.
[23] Cai C F, Hu W S, Worden R H. Thermochemical sulphate reduction in Cambro-Ordovician carbonates in Central Tarim[J]. Marine and Petroleum Geology, 2001, 18: 729-741.
[24] Zhu Guangyou, Zhang Shuichang, Liang Yingbo. The controlling factors and distribution prediction of H2S formation in marine carbonate gas reservoir[J]. Chinese Science Bulletin, 2007, 52 (suppl. I): 150-163.[朱光有, 张水昌, 梁英波. 中国海相碳酸盐岩气藏硫化氢形成的控制因素和分布预测[J]. 科学通报, 2007, 52(增刊I): 115-125.]
[25] Cai C F, Li K K, Li H T, et al. Evidence for cross formational hot brine flow from integrated 87Sr/86Sr, REE and fluid inclusions of the Ordovician veins in Central Tarim, China[J].Applied Geochemistry,2008, 23: 2 226-2 235.

[1] 胡作维,李云,黄思静,吕杰,朱炳光. 砂岩储层中原生孔隙的破坏与保存机制研究进展[J]. 地球科学进展, 2012, 27(1): 14-25.
[2] 黄思静,佟宏鹏,黄可可,刘丽红,张雪花. 阴极发光分析在恢复砂岩碎屑长石含量中的应用 ——鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J]. 地球科学进展, 2008, 23(10): 1013-1019.
阅读次数
全文


摘要