Please wait a minute...
img img
高级检索
地球科学进展  2004, Vol. 19 Issue (6): 963-970    DOI: 10.11867/j.issn.1001-8166.2004.06.0963
综述与评述     
海冰动力学数值方法研究进展
季顺迎;岳前进;王瑞学
大连理工大学工业装备结构分析国家重点实验室,辽宁 大连 116023
ADVANCES IN NUMERICAL METHODS FOR SEA ICE DYNAMICS
JI Shun-ying, YUE Qian-jin, WANG Rui-xue
State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116023, China
 全文: PDF(150 KB)  
摘要:

在海冰动力学数值模拟和预测研究中,人们将海冰视为连续介质分别建立了欧拉坐标下的有限差分(FD)方法、拉格朗日坐标下的光滑质点流体动力学(SPH)方法、欧拉和拉格朗日坐标相结合的质点网格法(PIC),近年来又发展了基于非连续介质的颗粒流(GF)方法。对以上几种海冰动力学数值方法的特点和适用性进行了讨论,结果表明:FD、PIC和SPH方法可适用于中长期海冰动力学数值模拟,但SPH方法的计算效率需进一步提高;GF方法在不同尺度下的海冰动力学数值模拟中的计算精度均有很强的适用性,但目前较适用于小尺度下海冰动力学基本特性的数值试验研究,计算时效还不能满足实际海冰数值模拟和预测的要求。为进一步提高海冰动力学模拟的精度和适用性,在不同时空尺度下分别发展与其相适应的数值方法是必要的。

关键词: 有限差分法质点网格法光滑质点流体动力学海冰动力学颗粒流方法    
Abstract:

In the study of sea ice rheological behavior under different temporal and spatial scales, a series of numerical methods have been developed in the past several decades. Nowadays, there are mainly four methods applied commonly, which are finite different (FD) method, particle-in-cell (PIC), smoothed particle hydrodynamics (SPH) and granular flow (GF) method. The Eulerian FD method is the most widely applied method for its high computational efficiency and stability in the polar and Marginal Ice Zone (MIZ) at large scale. It was also applied into other seas at meso-scale, such as Bohai Sea, Baltic Sea. Some new schemes, such as line successive over-relaxation (LSOR) and alternative direction implicit (ADI), were adopted into the FD method to improve its computational precision. The most shortcoming of FD method is the obvious numerical diffusion in solving momentum and continuity equations, especially at the ice edge. To remedy this problem, the coupled Lagrangian and Eulerian PIC approach was established for sea ice dynamics at large and meso scales. In the PIC method, the sea ice in fixed cells is divided into a series ice particle. The ice mass in cells is adjusted with the drifting of Lagrangian particles, and the particle velocity is interpolated from Eulerian cells. In the Lagrangian SPH method, the Gaussian kernel function is used to integrate the ice parameters from discrete particles to continuous field, and the sea ice rehology can be described precisely with the drifting, deformation of ice particles. In the three methods above, Hibler's Viscous plastic constitutive law was used generally. In the GF method, the sea ice is simulated as discrete medium instead of the continuous medium assumed in other methods. The viscous-elastic-plastic law was established to model the interaction among ice particles, and the dynamics processes of ice ridging, rafting and breakup can be simulated at small scales. But the biggest cost of this increased accuracy is a significant increase in computational time when compared with other methods, especially in its application at large and meso scales. Thus,  different numerical methods for the different demands for scale, precision or efficiency accordingly. Meanwhile, with the modification of existing methods, other new numerical methods, such as Arbitrary-Lagrangian-Eulerian (ALE), should be developed. Moreover, the study of numerical methods for sea ice dynamics should be coupled with other sea ice problems, such as constitutive law and thermodynamics, to improve the computational precision and efficiency comprehensively.

Key words: Sea ice dynamics    Finite difference method    Smoothed particle hydrodynamics    Particle-in-cell    Granular flow method.
收稿日期: 2003-06-16 出版日期: 2004-12-01
:  P731.15  
基金资助:

国家自然科学基金项目“中小尺度海冰动力学本构模型及数值方法研究”(编号:40206004)资助.

通讯作者: 季顺迎(1972-),男,河北省武邑人,讲师,主要从事工程海冰数值模拟和颗粒流体动力学研究.E-mail: jisy@dlut.edu.cn      E-mail: E-mail: jisy@dlut.edu.cn
作者简介: 季顺迎(1972-),男,河北省武邑人,讲师,主要从事工程海冰数值模拟和颗粒流体动力学研究.E-mail: jisy@dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
季顺迎
王瑞学
岳前进

引用本文:

季顺迎;岳前进;王瑞学. 海冰动力学数值方法研究进展[J]. 地球科学进展, 2004, 19(6): 963-970.

JI Shun-ying, YUE Qian-jin, WANG Rui-xue. ADVANCES IN NUMERICAL METHODS FOR SEA ICE DYNAMICS. Advances in Earth Science, 2004, 19(6): 963-970.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2004.06.0963        http://www.adearth.ac.cn/CN/Y2004/V19/I6/963

[1]Hibler W D. A dynamic thermodynamic sea ice model[J].Journal of Geophysical Oceanography, 1979, 9: 817-846.
[2]Lepparanta M, Hibler W D. The role of plastic ice interaction in Marginal Ice Zone dynamics[J].Journal of Geophysical Research, 1985, 90(C6): 11 899-11 909.
[3]Wu Huiding(吴辉碇), Bai Shan(白珊), Zhang Zhanhai(张占海). Numerical simulation for dynamical processes of sea ice[J].Acta Oceanologica Sinica(海洋学报), 1988, 16(3):303-325(in Chinese)
[4]Flato G M. A particle-in-cell sea-ice model[J].Atmosphere and Oceanography,1993, 31(3): 339-358.
[5]Shen H T, Chen Y C, Wake A,et al. Lagrangian discrete parcel simulation of river ice dynamics[J].International Journal of Offshore and Polar Engineering, 1993, 3(4): 328-332.
[6]Pritchard R, Mueller A, Hanzlick D,et al. Forecasting Bering Sea ice edge behavior[J].Journal of Geophysical Research, 1990, 95: 775-788.
[7]Shen H T, Su Junshan, Liu Lianwu. SPH simulation of river ice dynamics[J].Journal of Computational Physics, 2000, 165: 752-770.
[8]Wang Z, Shen H T, Wu H. A Lagrangian sea ice model with discrete parcel method[A]. In: Shen,edIce in Surface Water[C].  USA:Rotterdam,1998.313-320.
[9]Rheem C K, Yamaguchi H,〖KG*2〗Kato H. Distributed mass/discrete floe model for pack ice rheology computation[J].Journal of Marine Science and Technology, 1997, 2(2): 101-121.
[10]Shen H H, Hibler W D, Lepparanta M. On applying granular flow theory to a deforming broken ice field[J].Acta Mechanics, 1986, 63: 143-160.
[11]Shen H H, Hibler W D, Lepparanta M. The role of floe collisions in sea ice rheology[J].Journal of Geophysical Research, 1987, 92(C10): 7 085-7 096.
[12]Hopkins M A, Hibler W D, Flato G M. On the numerical simulation of the sea ice ridging process[J].Journal of Geophysical Research, 1991, 96(C3):4 809-4 820.
[13]Hopkins M A, Tuhkuri J, Lensu M. Rafting and riding of thin ice sheets[J].Journal of Geophysical Research, 1999, 104(C6): 13 605-13 613.
[14]Lepparanta M, Hibler W D. Mesoscale sea ice deformation in marginal ice zone dynamics[J].Journal of Geophysical Research, 1987, 92:7 060-7 070.
[15]Zhang Z H, Lepparanta M. Modeling the influence of ice on sea level variations in the Baltic Sea[J].Geophysica, 1995, 31(2):31-45.
[16]Zhang Zhanhai(张占海), Bai Shan(白珊), Wu Huiding(吴辉碇),et al. Numerical forecasting system for sea ice operation in the Bohai Sea[J].Marine Forecasts(海洋预报), 1994, 11(2):11-18(in Chinese)
[17]Wu Huiding(吴辉碇), Mathematical representations of sea ice dynamic-thermodynamic processes[J].Oceanologia et limnologia sinca(海洋与湖沼), 1991, 22(4):321-327(in Chinese).
[18]Bai Shan(白珊), Wu Huiding(吴辉碇). Numerical sea ice forecast for the Bohai Sea[J].Acta Meteorologica Sinica(气象学报), 1998, 56(2):139-151(in Chinese).
[19]Wang Renshu(王仁树). Numerical tests of sea ice for the Bohai Sea[J].Acta Oceanologica Sinica(海洋学报), 1984, 6(4): 572-580(in Chinese).
[20]Wang Renshu(王仁树), Liu Qinzheng(刘钦政), Chen Weibin(陈伟斌),et al. Numerical simulation and tests of sea ice drift process in the Bohai Sea[J].Oceanologia et limnologia Sinica(海洋与湖沼), 1994, 25(3): 408-415(in Chinese).
[21]Ip C F, Hibler W D, Flato G M. On the effect of the rheology on seasonal sea ice simulations[J].Annual Glaciology, 1991, 15: 17-25.
[22]Hunke E C, Dukowicz J K. An elastic-viscous-plastic model for sea ice dynamics[J].Journal of Physical Oceanography, 1997, 27: 1 849-1 867.
[23]Zhang J, Hibler W D. On an efficient numerical method for modeling sea ice dynamics[J].Journal of Geophysical Research, 1997, 102(C4):8 691-8 702.
[24]Zhang J, Rothrock D. Modeling Arctic sea ice with an efficient plastic solution[J].Journal of Geophysical Research, 2000, 105(C2):3 325-3 338.
[25]Hibler W D. Sea ice fracturing on the large scale[J].Engineering Fracture Mechanics, 2001, 68: 2 013-2 043.
[26]Ji Shunying(季顺迎), Yue Qianjin(岳前进). Numerical simulation of local drifting sea ice in Liaodong Bay by Smoothed Particle Hydrodynamics Method[J].Hydro-science and Engineering(水利水运工程学报), 2001, 4(90): 8-15(in Chinese) .
[27]Gutfraind R, Savage S B. Marginal ice zone rheology: Comparison of results from continuum-plastic models and discrete-particel simulations[J].Journal of Geophysical Research, 1997, 102(C6):12 647-12 661.
[28]Li Deyuan(李德元), Xu Guorong(徐国荣),et al. Numerical method for 2D unsteady fluid mechanics[M]. Beijing: Science Press, 1998.45-68(in Chinese)
[29]Huang Z J, Savage S B. Particle-in-cell and finite difference approaches for the study of marginal ice zone problems[J].Cold Regions Science and Technology, 1998, 28: 1-28.
[30]Lu Q M, Larsen J, Tryde P. On the role of ice interaction due to floe collisions in marginal ice zone dynamics[J].Journal of Geophysical Research, 1989, 94:14 525-14 537.
[31]Lepparanta M, Lensu M, Lu Q M. Shear flow of sea ice in the Marginal Ice Zone with collision rheology[J].Geophysica, 1990, 25(1~2):57-74.
[32]Lepparant M, Hakala R. The structure and strength of first-year ice ridges in the Baltic Sea[J].Cold Regions Science and Technology, 1992, 20:295-311.
[33]Hopkins M A. Four stages of pressure ridging[J].Journal of Geophysical Research,1998, 103: 21 883-21 891.
[34]Hopkins M A, Shen H H. Simulatio of pancake-ice dynamics in wave field[J].Annals of Glaciology, 2001, 33: 355 -360.
[35]Hopkins M A. On the mesosacle interaction of lead ice and floes[J].Journal of Geophysical Research, 1996, 101(C8): 18 315-18 326.
[36]Overland J E, McNutt S L, Salo S,et al. Arctic sea ice as a granular plastic[J].Journal of Geophysical Research, 1998, 103: 21 845 -21 868.
[37]Tremblay L B, Mysak L A. Modeling sea ice as a granular material, including the dilatancy effect[J].Journal of Physical Oceanography, 1997, 27:2 342-2 360.
[38]Hopkins M〖KG*2〗A. A high-resolution granular sea ice model[EB/OL]. 2002.
[39]Loset S. Discrete element modeling of a broken ice field-Part I: Model development[J].Cold Regions Science and Technology, 1994, 22:339-347.
[40]Loset S. Discrete element modeling of a broken ice field-Part II: simulation of ice loads on a boom[J].Cold Regions Science and Technology, 1994, 22:349-360.

No related articles found!