| 1 | Wilson J T. Evidence from Ocean Islands suggesting movement in the Earth [J]. Philosophical Transactions of the Royal Society of London, 1965, 258(1 088): 145-167. | 
																													
																						| 2 | Morgon W J. Deep mantle convection plumes and plate motions [J]. The American Association of Petroleum Geologists Bulletin, 1972, 56(2): 203-213. | 
																													
																						| 3 | Dietz R S. Continent and ocean basin evolution by spreading of the sea floor [J]. Nature, 1961, 190(7): 854-857. | 
																													
																						| 4 | Niu Yaoling, Shen Fangyu, Chen Yanhong, et al. The geologically testable hypothesis on subduction initiation and actions [J]. Earth Science Frontiers, 2018, 25(6): 51-66. | 
																													
																						|  | 牛耀龄, 沈芳宇, 陈艳红, 等. 俯冲带形成机制的可检验假说和检验方案 [J]. 地学前缘, 2018, 25(6): 51-66. | 
																													
																						| 5 | Niu Yaoling, Green D H. The petrological control on the Lithosphere-Asthenosphere Boundary (LAB) beneath ocean basins [J]. Earth-Science Reviews, 2018, 185: 301-307. | 
																													
																						| 6 | Stern R J. Subduction zones [J]. Reviews of Geophysics, 2002, 40(4):1 012. | 
																													
																						| 7 | Niu Yaoling, O’Hara M J. Global correlations of ocean ridge basalt chemistry with axial depth: A new perspective [J]. Journal of Petrology, 2008, 49(4): 633-664. | 
																													
																						| 8 | Niu Yaoling. Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites [J]. Journal of Petrology, 1997, 38(8): 1 047-1 074. | 
																													
																						| 9 | Plank T, Langmuir C H. Tracing trace elements from sediment input to volcanic output at subduction zones [J]. Letters to Nature, 1993, 362 (6 422): 739-743. | 
																													
																						| 10 | Plank T. Subduction zone geochemistry [C]// Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth. Switzerland: Springer, 2018: 1 384-1 392. | 
																													
																						| 11 | Zhao Zhenhua, Wang Qiang, Xiong Xiaolin. Complex mantle-crust interaction in subduction zone [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2004, 23(4): 277-284. | 
																													
																						|  | 赵振华, 王强, 熊小林. 俯冲带复杂的壳幔相互作用 [J]. 矿物岩石地球化学通报, 2004, 23(4): 277-284. | 
																													
																						| 12 | Tatsumi Y, Kogiso T. The subduction factory: Its role in the evolution of the Earth's crust and mantle [J]. Geological Society London Special Publications, 2003, 219(1): 55-88. | 
																													
																						| 13 | Tatsumi Y. The subduction factory: How it operates in the evolving Earth [J]. GSA Today, 2005, 15(7): 4-10. | 
																													
																						| 14 | Saffer D M, Tobin H J. Hydrogeology and mechanics of subduction zone forearcs: Fluid flow and pore pressure [J]. Annual Review of Earth and Planetary Sciences, 2011, 39(1): 157-186. | 
																													
																						| 15 | Schmidt M W, Poli S. Devolatilization during subduction [C]// Treatise on Geochemistry. Switzerland: Springer, 2014: 669-701. | 
																													
																						| 16 | Manning C E. The chemistry of subduction-zone fluids[J]. Earth and Planetary Science Letters, 2004, 223(1/2): 1-16. | 
																													
																						| 17 | Elliott T. Tracers of the slab [C]// Inside the Subduction Factory. Washington DC: American Geophysical Union, 2003: 23-45. | 
																													
																						| 18 | Spandler C, Pirard C. Element recycling from subducting slabs to arc crust: A review [J]. Lithos, 2013, 170/171: 208-223. | 
																													
																						| 19 | McCulloch M T, Gamble J A. Geochemical and geodynamical constraints on subduction zone magmatism [J]. Earth and Planetary Science Letters, 1991, 102(3/4): 358-374. | 
																													
																						| 20 | Hofmann A W, White W M. Mantle plumes from ancient oceanic crust [J]. Earth and Planetary Science Letters, 1982, 57(2): 421-436. | 
																													
																						| 21 | Hofmann A W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust [J]. Earth and Planetary Seience Letters, 1988, 90(3): 297-314. | 
																													
																						| 22 | Jackson M G, Dasgupta R. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts [J]. Earth and Planetary Science Letters, 2008, 276(1/2): 175-186. | 
																													
																						| 23 | Von Huene R, Scholl D W. Observations at convergent margins concerning sediment subduction,subduction erosion and the growth of continental crust [J]. Reviews of Geophysics, 1991, 29(3): 279-316. | 
																													
																						| 24 | Jin Xingchun, Yu Kaiping. Subduction factory and subduction recycling of continental material [J]. Advances in Earth Science, 2003, 18(5): 737-744. | 
																													
																						|  | 金性春, 于开平. 俯冲工厂和大陆物质的俯冲再循环研究 [J]. 地球科学进展, 2003, 18(5): 737-744. | 
																													
																						| 25 | Scholl D W, Von Huene R. Implications of estimated magmatic additions and recycling losses at the subduction zones of accretionary (non-collisional) and collisional (suturing) orogens [J]. Geological Society London Special Publications, 2009, 318(1): 105-125. | 
																													
																						| 26 | Vannucchi P, Morgan J P, Balestrieri M L. Subduction erosion, and the de-construction of continental crust: The Central America case and its global implications [J]. Gondwana Research, 2016, 40: 184-198. | 
																													
																						| 27 | Han Shuoshuo, Bangs N L, Carbotte S M, et al. Links between sediment consolidation and Cascadia megathrust slip behaviour [J]. Nature Geoscience, 2017, 10(12): 954-959. | 
																													
																						| 28 | Ikari M J, Niemeijer A R, Spiers C J, et al. Experimental evidence linking slip instability with seafloor lithology and topography at the Costa Rica convergent margin [J]. Geology, 2013, 41(8): 891-894. | 
																													
																						| 29 | Barry P H, Moor J M D, Giovannelli D, et al. Forearc carbon sink reduces long-term volatile recycling into the mantle [J]. Nature, 2019, 568(7 753): 487-492. | 
																													
																						| 30 | Plank T, Manning C E. Subducting carbon [J]. Nature, 2019, 574(7 778): 343-352. | 
																													
																						| 31 | Zhang Yonghua, Wu Zijun. Sedimentary organic carbon mineralization and its contribution to the marine carbon cycle in the marginal seas [J]. Advances in Earth Science, 2019, 34(2): 202-209. | 
																													
																						|  | 张咏华, 吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209. | 
																													
																						| 32 | Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle [J]. Chemical Geology, 1998, 145(3/4): 325-394. | 
																													
																						| 33 | Plank T. The chemical composition of subducting sediments [C]// Treatise on Geochemistry. Switzerland: Springer, 2014: 607-629. | 
																													
																						| 34 | Huene V R, Ranero C R, Vannucchi P. Generic model of subduction erosion [J]. Geology, 2004, 32(10): 913-916. | 
																													
																						| 35 | Chen Ping, Zheng Yanpeng, Liu Baohua. Geophysical features of the NANKAI trough subduction zone and their dynamic signficance [J]. Marine Geology and Quaternary Geology, 2014, 34(6): 153-160. | 
																													
																						|  | 陈萍, 郑彦鹏, 刘保华. 日本南海海槽俯冲带的地球物理特征及其动力学意义[J]. 海洋地质与第四纪地质, 2014, 34(6): 153-160. | 
																													
																						| 36 | Stern C R. Subduction erosion: Rates, mechanisms, and its role in arc magmatism and the evolution of the continental crust and mantle [J]. Gondwana Research, 2011, 20(2/3): 284-308. | 
																													
																						| 37 | Vannucchi P, Sak P B, Morgan J P, et al. Rapid pulses of uplift, subsidence, and subduction erosion offshore Central America: Implications for building the rock record of convergent margins [J]. Geology, 2013, 41(9): 995-998. | 
																													
																						| 38 | Rea D K, Ruff L J. Composition and mass flux of sediment entering the world ssubduction zones Implications for global sediment budgets, greatearthquakes, and volcanism [J]. Earth and Planetary Science Letters, 1996, 140(4): 1-12. | 
																													
																						| 39 | Lin Pingnan. Trace element and isotopic characteristics of western Pacific pelagic sediments: Implications for the petrogenesis of Mariana Arc magmas [J]. Geochimica et Cosmochimica Acta, 1992, 56(4): 1 641-1 654. | 
																													
																						| 40 | Wang Yuhang, Zhu Yuanyuan, Huang Jiandong, et al. Application of rare earth elements of the marine carbonate rocks in paleoenvironmental researches[J]. Advances in Earth Science, 2018, 33(9): 922-932. | 
																													
																						|  | 王宇航, 朱园园, 黄建东, 等. 海相碳酸盐岩稀土元素在古环境研究中的应用[J].地球科学进展, 2018, 33(9): 922-932. | 
																													
																						| 41 | Rudnick R L, Gao Shan. Composition of the continental crust [C]// Treatise on Geochemistry. Switzerland: Springer, 2014: 1-51. | 
																													
																						| 42 | Zindler A, Jagoutz E, Goldstein S. Nd, Sr and Pb isotopic systematics in a three-component mantle: A new perspective [J]. Nature, 1982, 298(5 874): 519-523. | 
																													
																						| 43 | Allègre C J. Isotope geodynamics [J]. Earth and Planetary Science Letters, 1987, 86(2/4): 175-203. | 
																													
																						| 44 | Vervoort J D, Patchett P J, Blichert T J, et al. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system [J]. Earth and Planetary Science Letters, 1999, 168(1/2): 79-99. | 
																													
																						| 45 | Vervoort J D, Plank T, Prytulak J. The Hf-Nd isotopic composition of marine sediments [J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 5 903-5 926. | 
																													
																						| 46 | Chen Tianyu, Ling Hongfei, Frank M, et al. Zircon effect alone insufficient to generate seawater Nd-Hf isotope relationships [J]. Geochemistry Geophysics Geosystems, 2011, 12(5): 1-9. | 
																													
																						| 47 | Chauvel C, Lewin E, Carpentier M, et al. Role of recycled oceanic basalt and sediment in generating the Hf-Nd mantle array [J]. Nature Geoscience, 2008, 1(1): 64-67. | 
																													
																						| 48 | Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: Solid-phase associations and seawater speciation [J]. Marine Geology, 2003, 198(3): 331-351. | 
																													
																						| 49 | Barrett T J, Taylor P N, Lugoqski J. Metalliferous sediments from DSDP Leg 92: The East Pacific Rise transect [J]. Geochimica et Cosmochimica Acta, 1987, 51(9): 2 241-2 253. | 
																													
																						| 50 | Briqueu L, Lancelot J R. Sr isotopes and K, Rb, Sr balance in sediments and igneous rocks from the subducted plate of the Vanuatu (New Hebrides) active margin [J]. Geochimica et Cosmochimica Acta, 1983, 47(2): 191-200. | 
																													
																						| 51 | Hauff F, Hoernle K, Schmidt A. Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system [J]. Geochemistry Geophysics Geosystems, 2003, 4(8): 1-30. | 
																													
																						| 52 | Tomascak P B, Tera F, Helz R T, et al. The absence of lithium isotope fractionation during basalt differentiation: New measurements by multicollector sector ICP-MS [J]. Geochimica et Cosmochimica Acta, 1999, 63(6): 907-910. | 
																													
																						| 53 | Tang Yanjie, Zhang Hongfu, Ying Jifeng. Review of the Lithium isotope system as a geochemical tracer [J]. International Geology Review, 2007, 49(4): 374-388. | 
																													
																						| 54 | Zhang Xia, Zhai Shikui, Yu Zenghui, et al. Subduction contribution to the magma source of the Okinawa Trough—Evidence from boron isotopes [J]. Geological Journal, 2019, 54(1): 605-613. | 
																													
																						| 55 | Tonarini S, Leeman W P, Leat P T. Subduction erosion of forearc mantle wedge implicated inthe genesis of the Sout Sandwich Island arc: Evidence from boron isotope systematics [J]. Earth and Planetary Science Letters, 2011, 301(1/2): 275-284. | 
																													
																						| 56 | Teng Fangzhen, Yan Hu, Chauvel C. Magnesium isotope geochemistry in arc volcanism [J]. Proceedings of the National Academy of Sciences, 2016, 113(26): 7 082-7 087. | 
																													
																						| 57 | Chan L H, Leeman W P, Plank T. Lithium isotopic composition of marine sediments [J]. Geochemistry Geophysics Geosystems, 2006, 7(6): 1-25. | 
																													
																						| 58 | Chan L H, Hein J R. Lithium contents and isotopic compositions of ferromanganese deposits from the global ocean [J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11/13): 1 147-1 162. | 
																													
																						| 59 | Wan Hongqiong, Sun He, Liu Haiyang, el at. Lithium isotopic geochenistry in subduction zones: Retrospects and prospects earth science frontiers [J]. Earth Science Frontiers, 2015, 22(5): 29-34. | 
																													
																						|  | 万红琼, 孙贺, 刘海洋, 等. 俯冲带Li同位素地球化学回顾与展望 [J]. 地学前缘, 2015, 22(5): 29-43. | 
																													
																						| 60 | Marschall H R. Boron isotopes in the ocean floor realm and the mantle[C]// Advances in Isotope Geochemistry. Switzerland: Springer, 2018: 189-215. | 
																													
																						| 61 | Ishikawa T, Nakamura E. Boron isotope systematics of marine sediments [J]. Earth and Planetary Science Letters, 1993, 117(3/4): 567-580. | 
																													
																						| 62 | Foster G L, Pogge von Strandmann P A E, Rae J W B. Boron and magnesium isotopic composition of seawater [J]. Geochemistry Geophysics Geosystems, 2010, 11(8): 1-10. | 
																													
																						| 63 | Zhang Xia, Yu Zenghui, Zhai Shikui, et al. Systematic differences in boron isotope compositions between mid-ocean ridge and back-arc basin hydrothermal fluids [J]. Acta Oceanologica Sinica, 2019, 41(11): 64-74. | 
																													
																						|  | 张侠, 于增慧, 翟世奎, 等. 洋中脊和弧后盆地热液区热液流体B同位素组成的系统性差异 [J]. 海洋学报, 2019, 41(11): 64-74. | 
																													
																						| 64 | Hoog J D, Savov I P. Boron isotopes as a tracer of subduction zone processes [C]// Advances in Isotope Geochemistry. Switzerland: Springer, 2018: 217-247. | 
																													
																						| 65 | Hu Yan, Teng Fangzhen, Plank T, et al. Magnesium isotopic composition of subducting marine sediments [J]. Chemical Geology, 2017, 466: 15-31. | 
																													
																						| 66 | Teng Fangzhen. Magnesium isotope geochemistry [J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1): 219-287. | 
																													
																						| 67 | Li Wangye, Teng Fangzhen, Ke Shan, et al. Heterogeneous magnesium isotopic composition of the upper continental crust [J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6 867-6 884. | 
																													
																						| 68 | Kolodny Y, Epstein S. Stable isotope geochemistry of deep sea cherts [J]. Geochimica et Cosmochimica Acta, 1976, 40(10): 1 195-1 209. | 
																													
																						| 69 | Li Yue, Wang Rujian, Li Wenbao. Review on research on paleo-sea level reconstruction based on foraminiferal oxygen isotope in deep sea sediments [J]. Advances in Earth Science, 2016, 31(3): 310-319. | 
																													
																						|  | 李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展 [J]. 地球科学进展, 2016, 31(3): 310-319. | 
																													
																						| 70 | Bindeman I N, Eiler J M, Yogodzinski G M, et al. Oxygen isotope evidence for slab melting in modern and ancient subduction zones [J]. Earth and Planetary Science Letters, 2005, 235(3/4): 480-496. | 
																													
																						| 71 | Eiler J M, Carr M J, Reagan M, et al. Oxygen isotope constraints on the sources of Central American arc lavas [J]. Geochemistry Geophysics Geosystems, 2005, 6(7): 1-28. | 
																													
																						| 72 | Nielsen S G, Horner T J, Pryer H V, et al. Barium isotope evidence for pervasive sediment recycling in the upper mantle [J]. Science Advances, 2018, 4(7): 1-8. | 
																													
																						| 73 | Nielsen S G, Yogodzinski G, Prytulak J, et al. Tracking along-arc sediment inputs to the Aleutian arc using thallium isotopes [J]. Geochimica et Cosmochimica Acta, 2016, 181: 217-237. | 
																													
																						| 74 | Shi Xuefa, Yan Quanshu. Magmatism of typical marginal basins (or Back-Arc Basins) in the West Pacific [J]. Advances in Earth Science, 2013, 28(7): 737-750. | 
																													
																						|  | 石学法, 鄢全树. 西太平洋典型边缘海盆的岩浆活动 [J]. 地球科学进展, 2013, 28(7): 737-750. | 
																													
																						| 75 | Wang Lu, Kusky T M, Polat A, et al. Partial melting of deeply subducted eclogite from the Sulu orogen in China [J]. Nature Communications, 2014, 5(1): 5 604. | 
																													
																						| 76 | Castillo P R. Adakite petrogenesis [J]. Lithos, 2012, 134/135: 304-316. | 
																													
																						| 77 | Hernández-Uribe D, Hernández-Montenegro J D, Cone K A, et al. Oceanic slab-top melting during subduction: Implications for trace-element recycling and adakite petrogenesis [J]. Geology, 2020, 48. DOI:10.1130/G46835.1. doi: 10.1130/G46835.1
 | 
																													
																						| 78 | Zheng Yongfei, Chen Renxu, Xu Zheng, et al. The transport of water in subduction zones [J]. Science China Earth Sciences, 2016, 46(3): 253-286. | 
																													
																						|  | 郑永飞, 陈仁旭, 徐峥, 等. 俯冲带中的水迁移 [J]. 中国科学:地球科学, 2016, 46(3): 253-286. | 
																													
																						| 79 | Fryer P, Lockwood J P, Becker N, et al. Significance of Serpentine Mud Volcanism in convergent margins [J]. Geological Society of America Special Paper 349, 2000,349: 35-51. | 
																													
																						| 80 | Fryer P. Serpentinite mud volcanism: Observations, processes, and implicationsn [J]. Annual Review of Marine Science, 2012, 4(1): 345-373. | 
																													
																						| 81 | Wang Xiaomei, Zeng Zhigang, Chen Junbing. Serpentinization of peridotite in the south of Mariana front arc [J]. Progress in Natural Science, 2009, 19(8): 859-867. | 
																													
																						|  | 汪小妹, 曾志刚, 陈俊兵. 马里亚纳前弧南部橄榄岩的蛇纹石化 [J]. 自然科学进展, 2009, 19(8): 859-867. | 
																													
																						| 82 | Tryon M D, Wheat C G, Hilton D R. Fluid sources and pathways of the Costa Rica erosional convergent margin [J]. Geochemistry Geophysics Geosystems, 2010, 11(4):1-15. | 
																													
																						| 83 | Johnson M C, Plank T. Dehydration and melting experiments constrain the fate of subducted sediments [J]. Geochemistry Geophysics Geosystems, 1999, 1(1): 1-26. | 
																													
																						| 84 | Plank T, Kelley K A, Murray R W, et al. Chemical composition of sediments subducting at the Izu-Bonin trench [J]. Geochemistry Geophysics Geosystems, 2007, 8(4): 1-16. | 
																													
																						| 85 | Tera F, Brown L, Morris J, et al. Sediment incorporation in island-arc magmas: Inferences from 10Be [J]. Geochimica et Cosmochimica Acta, 1986, 50(4): 535-550. | 
																													
																						| 86 | Tang Ming, Rudnick R L, Chauvel C. Sedimentary input to the source of Lesser Antilles lavas: A Li perspective [J]. Geochimica et Cosmochimica Acta, 2014, 144: 43-58. | 
																													
																						| 87 | Haase K M, Worthington T J, Stoffers P, et al. Mantle dynamics, element recycling, and magma genesis beneath the Kermadec Arc-Havre Trough [J]. Geochemistry Geophysics Geosystems, 2002, 3(11): 1-22. | 
																													
																						| 88 | Zhang Haitao, Yan Quanshu, Li Chuanshun, et al. Geochemistry of diverse lava types from the Lau Basin (South West Pacific): Implications for complex back-arc mantle dynamics [J]. Geological Journal, 2018, 54(6): 1-17. | 
																													
																						| 89 | Yan Quanshu, Shi Xuefa, Li Naisheng. Geology of Lau Basin in the southwest pacific ocean [J]. Marine Geology and Quaternary Geology, 2010, 30(1):131-140. | 
																													
																						|  | 鄢全树, 石学法, 李乃胜. 西南太平洋劳海盆地质学研究进展 [J]. 海洋地质与第四纪地质, 2010, 30(1):131-140. | 
																													
																						| 90 | Yan Quanshu, Castillo P R, Shi Xuefa. Geochemistry of basaltic lavas from the southern Lau Basin: Input of compositionally variable subduction components [J]. International Geology Review, 2012, 54(12): 1 456-1 474. | 
																													
																						| 91 | Yan Quanshu, Zhang Pingyang, Metcalfe I, et al. Geochemistry of axial lavas from the mid- and southern Mariana Trough, and implications for back-arc magmatic processes [J]. Mineralogy and Petrology, 2019, 113(6):803-820. | 
																													
																						| 92 | Patino L C, Carr M J, Feigenson M D. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input [J]. Contributions to Mineralogy and Petrology, 2000, 138(3): 265-283. | 
																													
																						| 93 | Feigenson M D, Carr M J. The source of Central American lavas: Inferences from geochemical inverse modeling [J]. Contributions to Mineralogy and Petrology, 1993, 113(2): 226-235. | 
																													
																						| 94 | Plank T, Balzer V, Carr M. Nicaraguan volcanoes record paleoceanographic changes accompanying closure of the Panama gateway [J]. Geology, 2002, 30(12): 1 087-1 090. | 
																													
																						| 95 | Yan Quanshu, Shi Xuefa. Geological effects of aseismic ridges or seamount chains subduction on the supra-subduction zone [J]. Acta Oceanologica Sinica, 2014, 35(5): 107-123. | 
																													
																						|  | 鄢全树, 石学法. 无震脊或海山链俯冲对超俯冲带处的地质效应 [J]. 海洋学报, 2014, 36(5): 107-123. | 
																													
																						| 96 | Li Yongxiang, Yan Quanshu, Zhao Xixi, et al. Research on seismogenesis at erosive convergent margins: Report from IODP expedition 344 [J]. Advances in Earth Science, 2013, 28(6): 728-736. | 
																													
																						|  | 李永祥, 鄢全树, 赵西西, 等. 剥蚀型汇聚板块边缘大地震成因机理研究: 来自国际综合大洋钻探344航次的报告[J]. 地球科学进展, 2013, 28(6): 728-736. | 
																													
																						| 97 | Harris R, Sakaguchi A, Petronotis K, et al. Costa Rica Seismogenesis Project, Program A Stage 2 (CRISP-A2): Sampling and quantifying lithologic inputs and fluid inputs and outputs of the seismogenic zone[C]//Proceedings of the Integrated Ocean Drilling Program. 2012: 344. | 
																													
																						| 98 | Li Yongxiang, Zhao Xixi, Jovane L, et al. Paleomagnetic constraints on the tectonic evolution of the Costa Rican subduction zone: New results from sedimentary successions of IODP drill sites from the Cocos Ridge [J]. Geochemistry Geophysics Geosystems, 2015, 16(12): 4 479-4 493. | 
																													
																						| 99 | Zindler A, Hart S. Chemical geodynamics [J]. Earth and Planetary Science Letters, 1986, 14(1): 93-571. | 
																													
																						| 100 | Stracke A, Hofmann A W, Hart S R. FOZO, HIMU, and the rest of the mantle zoo [J]. Geochemistry Geophysics Geosystems, 2005, 6(5): 1-20. | 
																													
																						| 101 | Weaver B L. The origin of ocean island basalt end-member composition trace element and isotopic constraints [J]. Earth and Planetary Science Letters, 1991, 104(2/4): 381-397. | 
																													
																						| 102 | Eisele J, Sharma M, Galer S J G, et al. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot [J]. Earth and Planetary Science Letters, 2002, 196(3/4): 197-212. | 
																													
																						| 103 | Niu Yaoling, O'Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B4): 1-19. | 
																													
																						| 104 | Workman R K, Hart S R, Jackson M, et al. Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain [J]. Geochemistry Geophysics Geosystems, 2004, 5(4): 1-44. | 
																													
																						| 105 | Willbold M, Stracke A. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust [J]. Geochemistry Geophysics Geosystems, 2006, 7(4): 1-30. | 
																													
																						| 106 | Jackson M G, Hart S R, Koppers A A P, et al. The return of subducted continental crust in Samoan lavas [J]. Nature, 2007, 448(7 154): 684-687. | 
																													
																						| 107 | McKenzie D, O’Nions R K. Mantle reservoirs and ocean island basalts [J]. Nature, 1983, 301(5 897): 229-231. | 
																													
																						| 108 | Wang Xiaojun, Chen Lihui, Alrecht W H, et al. Recycled ancient ghost carbonate in the Pitcarin mantle plume [J]. Proceedings of the National Academy of Sciences, 2018, 115(35): 8 682-8 687. | 
																													
																						| 109 | Meibom A, Anderson D L. The statistical upper mantle assemblage [J]. Earth and Planetary Science Letters, 2003, 217(1/2): 123-139. | 
																													
																						| 110 | Helffrich G R, Wood B J. The Earth's mantle [J]. Nature, 2001, 412(6 846): 501-507. | 
																													
																						| 111 | Eiler J M, Schiano P, Kitchen N, et al. Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts [J]. Nature, 2000, 403(6 769): 530-534. | 
																													
																						| 112 | Schilling J. Iceland mantle plume: Geochemical study of Reykjanes Ridge [J]. Nature, 1973, 242(5 400): 565-571. | 
																													
																						| 113 | Hofmann A W. Mantle geochemistry, the message from oceanic volcanism [J]. Nature, 1997, 385(6 613): 219-229. |