地球科学进展 ›› 2020, Vol. 35 ›› Issue (3): 231 -245. doi: 10.11867/j.issn.1001-8166.2020.014

综述与评述 上一篇    下一篇

欧亚海盆大西洋水输运过程及热释放研究进展
吴延俊 1( ),赵进平 1, 2( )   
  1. 1.中国海洋大学海洋与大气学院, 山东 青岛 266100
    2.物理海洋教育部重点实验室, 山东 青岛 266100
  • 收稿日期:2019-12-17 修回日期:2020-02-20 出版日期:2020-03-10
  • 通讯作者: 赵进平 E-mail:jpzhao@ouc.edu.cn
  • 基金资助:
    国家自然科学基金重点项目“北极快速变化的能量过程研究”(41941012);国家自然科学基金项目“北欧海多种流态的耦合作用及其对北冰洋和北大西洋的外溢影响”(41976022)

Thermosteresis and Transportation of Atlantic Water Along Eurasian Basin of the Arctic Ocean

Yanjun Wu 1( ),Jinping Zhao 1, 2( )   

  1. 1.College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
    2.Physical Oceanography Laboratory, Ministry of Education, Qingdao 266100, China
  • Received:2019-12-17 Revised:2020-02-20 Online:2020-03-10 Published:2020-04-10
  • Contact: Jinping Zhao E-mail:jpzhao@ouc.edu.cn
  • About author:Wu Yanjun (1996-), male, Nanping City, Fujian Province, Master student. Research areas include polar physical oceanography. E-mail: wuyanjun_ouc@126.com
  • Supported by:
    the National Natural Science Foundation of China “Study on the energy processes related to the Arctic rapid change(41941012┫” and “The coupling processes of multiple flows in Nordic Seas and their spillover influence on the North Atlantic and Arctic Oceans ┣41976022┫”)

温暖的大西洋水进入北冰洋后,通过热量释放影响海洋和大气环境。在欧亚海盆,大西洋水深度浅,其热量释放是海冰融化的重要热源,也是海冰减退和北极放大的关键因素。大西洋水输送的环流结构没有变化,而是通过流速的变化改变热量输送的效率。大西洋水在流动过程中通过湍流运动、冬季对流和双扩散三大物理机制向上释放热量而降温。近年来,大西洋水热量增加并将暖信号向北冰洋内部输送,进而影响下游加拿大海盆的海洋过程。增暖的热源来自弗拉姆海峡的异常暖事件,体现为北欧海挪威大西洋流水温长期变化因素与低频振荡因素的共同作用。

It is summarized based on previous studies that warm and salty Atlantic Water (AW) brings huge amount of heat into Arctic Ocean and influences oceanic heat distribution and climate. Both heat transportation and heat release of AW are key factors affecting the thermal process in Eurasian Basin. The Arctic circumpolar boundary current is the carrier of AW, whose flow velocity varies to influence the efficiency of the warm advection. Because the depth of AW in Eurasian Basin is much shallower than that in Canadian Basin, the upward heat release of AW is an important heat source to supply sea ice melting. Turbulent mixing, winter convention and double-diffusion convention constitute the main physical mechanism for AW upward heat release, which results in the decrease of the Atlantic water core temperature during its spreading along the boundary current. St. Anna Trough, a relatively narrow and long trough in northern continental shelf of Kara Sea, plays a key role in remodeling temperature and salinity characteristics of AW, in which the AW from Fram Strait enters the trough and mixes with the AW from Barents Sea. Since the 21st Century, AW in the Arctic Ocean has experienced obvious warming and had the influence on the physical processes in downstream Canada Basin, which is attributed to the anomalous warming events of AW inflowing from the Fram Strait. It is inferred that the warming AW is dominated by a long-term warming trend superimposed on low frequency oscillation occurring in the Nordic Seas and North Atlantic Ocean. As the Arctic Ocean is experiencing sea ice decline and Arctic amplification, the role of AW heat release in response to the rapid change needs further investigation.

中图分类号: 

图 1 NABOS布放的主要潜标和温盐深仪(Conductivity,Temperature,Depth,CTD)断面观测站点分布[1]
M1、M3、M5和M9分别表示不同的潜标组
Fig. 1 Locations of mooring,buoys,CTDConductivity,Temperature,Depthlines and oceanographic sections about NABOS[1]
M1,M3,M5 and M9 represent different mooring series
图2 北冰洋大西洋水入流示意图[13]
箭头表示大西洋水输运方向,红色和蓝色箭头分别表示大西洋入流水中的弗拉姆海峡分支和巴伦支海分支
Fig. 2 Map of the inflow region of Atlantic Water (AW) to the Arctic Ocean[13]
Arrows trace the Atlantic Water (AW) pathways, red and blue arrows show the Fram Strait and Barents Sea branches, respectively
图3 喀拉海北部圣安娜海槽内大西洋水环流示意图[13]
黄色箭头表示始终沿陆坡边缘输运的弗拉姆海峡分支水,红色箭头表示弗拉姆海峡分支水在圣安娜海槽内环流路径
Fig. 3 Map of the northern Kara Sea showing the St. Anna Trough (ST)[13]
Arrows show the Fram Strait branch of the AW inflow into the Arctic Ocean, which recirculates in the ST (red arrows) and follows
the continental margin (yellow arrows)
图4 大西洋水输运过程中正压流结构(a)和斜压流结构(b)维持原因[29]
Fig. 4 Schematic of boundary current structure for (a) barotropic case and (b) baroclinic case[29]
图5 大西洋水核心变化示意图
(a)跨陆坡冬季风导致表层离岸流,大西洋水核心向岸移动;(b)夏季大西洋水核心又回到最初的位置 [53]
Fig. 5 Sketch of proposed seasonal shift of the Atlantic Water core
(a)Cross-slope winter wind causes off-shore surface current, which moves the AW core toward the shelf;(b) In summer, the Atlantic Water core relaxes back to its initial position [53]
表1 圣安娜海槽东侧出流中 3个水团的基本情况
Table 1 The basic circumstances of three water masses on the eastern flank of St. Anna Trough
图6 欧亚海盆大陆边缘上的“大西洋化”示意图[20]
红色箭头表示大西洋的热量的输运
Fig. 6 Sketch of “Atlantification” of the Eurasian Basin continental margin in recent years[20]
Red arrows represent transport of Atlantic water heat
1 Alexeev Vladimir. Nansen and Amundsen Basins Observational System[EB/OL]. [2019-10-12]..
URL    
2 Polyakov I, Walsh D, Dmitrenko I, et al. A long‐term circulation and water mass monitoring program for the Arctic Ocean [J]. Eos, Transactions American Geophysical Union, 2003, 84(30): 281-288.
3 Carmack E C, Macdonald R W, Perkin R G, et al. Evidence for warming of Atlantic water in the southern Canadian Basin of the Arctic Ocean: Results from the Larsen‐93 expedition [J]. Geophysical Research Letters, 1995, 22(9): 1 061-1 064.
4 Mclaughlin F, Carmack E, Macdonald R, et al. The Canada Basin, 1989-1995: Upstream events and far‐field effects of the Barents Sea [J]. Journal of Geophysical Research: Oceans, 2002, 107(C7): 19-1-20.
5 Blinov N, Popkov S. On the heat exchange of the Atlantic water in the Arctic Basin [J]. Eos,Transactions,American Geophysical Union, Leningrad, Gydrometeoizdat, 1986, 408:90-98.
6 Polyakov I V, Bhatt U S, Walsh J E, et al. Recent oceanic changes in the Arctic in the context of long‐term observations [J]. Ecological Applications, 2013, 23(8): 1 745-1 764.
7 Shao Qiuli, Zhao Jinping. On the deep water of the Nordic Seas [J]. Advances in Earth Science, 2014, 29(1):42-55.
邵秋丽, 赵进平. 北欧海深层水的研究进展[J]. 地球科学进展, 2014, 29(1):42-55.
8 Timokhov L, Ashik I, Dmitrenko I, et al. Extreme changes of the Arctic Ocean during and after IPY 2007/2008 [J]. Polarforschung, 2012, 81(2): 85-102.
9 Overland J E, Wang M. When will the summer Arctic be nearly sea ice free?[J]. Geophysical Research Letters, 2013, 40(10): 2 097-2 101.
10 Dmitrenko I A, Polyakov I V, Kirillov S A, et al. Toward a warmer Arctic Ocean: Spreading of the early 21st century Atlantic water warm anomaly along the Eurasian Basin margins [J]. Journal of Geophysical Research: Oceans, 2008, 113(C5). DOI:10.1029/2007JC004158.
doi: 10.1029/2007JC004158    
11 Polyakov I V, Pnyushkov A V, Timokhov L A. Warming of the intermediate Atlantic water of the Arctic Ocean in the 2000s [J]. Journal of Climate, 2012, 25(23): 8 362-8 370.
12 Wang Xiaoyu, Zhao Jinping, Li Tao, et al. Hydrographic features of the Norwegian Sea and the Greenland Sea in summer 2012 [J]. Advances in Earth Science, 2015, 30(3): 346-356.
王晓宇, 赵进平, 李涛, 等. 2012年夏季挪威海和格陵兰海水文特征分析[J]. 地球科学进展, 2015, 30(3):346-356.
13 Dmitrenko I A, Kirillov S A, Serra N, et al. Heat loss from the Atlantic water layer in the northern Kara Sea: Causes and consequences [J]. Ocean Science, 2014, 10(4): 719-730.
14 Polyakov I V, Beszczynska A, Carmack E C, et al. One more step toward a warmer Arctic [J]. Geophysical Research Letters, 2005, 32(17). DOI:10.1029/2005GL023740.
doi: 10.1029/2005GL023740    
15 Karcher M J, Gerdes R, Kauker F, et al. Arctic warming: Evolution and spreading of the 1990s warm event in the Nordic seas and the Arctic Ocean [J]. Journal of Geophysical Research: Oceans, 2003, 108(C2). DOI:10.1029/2001JC001265.
doi: 10.1029/2001JC001265    
16 Polyakov I, Alekseev G, Timokhov L, et al. Variability of the intermediate Atlantic water of the Arctic Ocean over the last 100 years [J]. Journal of Climate, 2004, 17(23): 4 485-4 497.
17 Polyakov I V, Alexeev V A, Ashik I M, et al. Fate of early 2000s Arctic warm water pulse [J]. Bulletin of the American Meteorological Society, 2011, 92(5): 561-566.
18 Polyakov I V, Timokhov L A, Alexeev V A, et al. Arctic Ocean warming contributes to reduced polar ice cap [J]. Journal of Physical Oceanography, 2010, 40(12): 2 743-2 756.
19 Polyakov I, Walsh D, Dmitrenko I, et al. Arctic Ocean variability derived from historical observations [J]. Geophysical Research Letters, 2003, 30(6). DOI:10.1029/2002GL016441.
doi: 10.1029/2002GL016441    
20 Polyakov I V, Pnyushkov A V, Alkire M B, et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean [J]. Science, 2017, 356(6 335): 285-291.
21 Zhao Jinping, Cao Yong, Shi Jiuxin. Spatial variation of the Arctic Oscillation and its long-term change [J]. Tellus A: Dynamic Meteorology and Oceanography, 2010, 62(5): 661-672.
22 Zhao J, Drinkwater K, Wang X. Positive and negative feedbacks related to the Arctic Oscillation revealed by air-sea heat fluxes [J]. Tellus A: Dynamic Meteorology and Oceanography, 2019, 71(1): 1-21.
23 PolyakoV I V, Johnson M A. Arctic decadal and interdecadal variability [J]. Geophysical Research Letters, 2000, 27(24): 4 097-4 100.
24 Rudels B, Meyer R, Fahrbach E, et al. Water mass distribution in Fram Strait and over the Yermak Plateau in summer 1997[C]//Annales Geophysicae. Springer-Verlag, 2000, 18(6): 687-705.
25 Polyakov I V, Alekseev G V, Bekryaev R V, et al. Long-term ice variability in Arctic marginal seas [J]. Journal of Climate, 2003, 16(12): 2 078-2 085.
26 Pnyushkov A V, Polyakov I V, Ivanov V V, et al. Structure and variability of the boundary current in the Eurasian Basin of the Arctic Ocean [J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 101: 80-97.
27 Beszczynska-M?ller A, Fahrbach E, Schauer U, et al. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean, 1997-2010 [J]. ICES Journal of Marine Science, 2012, 69(5): 852-863.
28 Rudels B, Schauer U, Bjrk G, et al. Observations of water masses and circulation in the Eurasian Basin of the Arctic Ocean from the 1990s to the late 2000s [J]. OS Special Issue: Ice-Atmosphere-Ocean Interactions in the Arctic Ocean During IPY: The Damocles Project, 2013, 9(1): 147-169.
29 Pnyushkov A V, Polyakov I V, Ivanov V V, et al. Structure of the Fram Strait branch of the boundary current in the Eurasian Basin of the Arctic Ocean [J]. Polar Science, 2013, 7(2): 53-71.
30 Loeng H, Ozhigin V, ?dlandsvik B. Water fluxes through the Barents Sea [J]. ICES Journal of Marine Science, 1997, 54(3): 310-317.
31 Rudels B, Korhonen M, Schauer U, et al. Circulation and transformation of Atlantic water in the Eurasian Basin and the contribution of the Fram Strait inflow branch to the Arctic Ocean heat budget [J]. Progress in Oceanography, 2015, 132:128-152.
32 Schauer U, Loeng H, Rudels B, et al. Atlantic water flow through the Barents and Kara Seas [J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49(12): 2 281-2 298.
33 Schauer U, Rudels B, Jones E P, et al. Confluence and redistribution of Atlantic water in the Nansen, Amundsen and Makarov basins[J]. Annales Geophysicae, 2002, 20(2): 257-273.
34 ?rthun M, Schrum C. Ocean surface heat flux variability in the Barents Sea [J]. Journal of Marine Systems, 2010, 83(1/2): 88-98.
35 Aksenov Y, Bacon S, Coward A C, et al. The North Atlantic inflow to the Arctic Ocean: High-resolution model study [J]. Journal of Marine Systems, 2010, 79(1/2): 1-22.
36 Smedsrud L H, Esau I, Ingvaldsen R B, et al. The role of the Barents Sea in the Arctic climate system [J]. Reviews of Geophysics, 2013, 51(3): 415-449.
37 Steele M, Morison J H, Curtin T B. Halocline water formation in the Barents Sea [J]. Journal of Geophysical Research: Oceans, 1995, 100(C1): 881-894.
38 Dmitrenkoia, Rudels B, Kirillov S A, et al. Atlantic water flow into the Arctic Ocean through the St. Anna trough in the northern Kara Sea [J]. Journal of Geophysical Research: Oceans, 2015, 120(7): 5 158-5 178.
39 Aksenov Y, Ivanov V V, Nurser A G, et al. The Arctic circumpolar boundary current [J]. Journal of Geophysical Research: Oceans, 2011, 116(C9). DOI:10.1029/2010JC006637.
doi: 10.1029/2010JC006637    
40 Hanzlick D, Aagaard K. Freshwater and Atlantic water in the Kara Sea [J]. Journal of Geophysical Research: Oceans, 1980, 85(C9): 4 937-4 942.
41 Aagaard K. A synthesis of the Arctic Ocean circulation [M]//Rapp P,Reun V. Conseil Permanent International pour l'Exploration de la Mer,1989,188:11-22.
42 Rudels B. Arctic Ocean circulation and variability-advection and external forcing encounter constraints and local processes [J]. Ocean Science, 2012, 8(6): 2 313-2 376.
43 Dmitrenko I A, Kirillov S A, Ivanov V V, et al. Seasonal modification of the Arctic Ocean intermediate water layer off the eastern Laptev Sea continental shelf break [J]. Journal of Geophysical Research: Oceans, 2009, 114(C6): 513-527.
44 Pnyushkov A V, Polyakov I V, Rember R, et al. Heat, salt, and volume transports in the eastern Eurasian Basin of the Arctic Ocean from 2 years of mooring observations [J]. Ocean Science, 2018, 14(6): 1 349-1 371.
45 Woodgate R A, Aagaard K, Muench R D, et al. The Arctic Ocean boundary current along the Eurasian slope and the adjacent Lomonosov Ridge: Water mass properties, transports and transformations from moored instruments [J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48(8): 1 757-1 792.
46 Schauer U, Beszczynska-M ller A, Walczowski W, et al. Variation of flow through the Fram Strait to the Arctic Ocean between 1997 and 2006 [M]//Dickson R R, Meincke J, Rhines P, eds. Arctic-Subarctic Ocean Fluxes. Dordrecht: Springer,2008.
47 Schauer U, Fahrbach E, Osterhus S, et al. Arctic warming through the Fram Strait: Oceanic heat transport from 3 years of measurements [J]. Journal of Geophysical Research: Oceans, 2004, 109(C6): C06026. DOI:10.1029/2003JC001823.
doi: 10.1029/2003JC001823    
48 Ivanov V V, Polyakov I V, Dmitrenko I A, et al. Seasonal variability in Atlantic water off Spitsbergen [J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56(1): 1-14.
49 Ivanov V V, Golovin P N. Observations and modeling of dense water cascading from the northwestern Laptev Sea shelf [J]. Journal of Geophysical Research: Oceans, 2007, 112(C9). DOI: 10.1029/2006JC003882.
doi: 10.1029/2006JC003882    
50 Aagaard K, Coachman L, Carmack E. On the halocline of the Arctic Ocean [J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1981, 28(6): 529-545.
51 Martin S, Cavalieri D J. Contributions of the Siberian shelf polynyas to the Arctic Ocean intermediate and deep water [J]. Journal of Geophysical Research: Oceans, 1989, 94(C9): 12 725-12 738.
52 Dmitrenko I A, Kirillov S A, Tremblay L B, et al. Impact of the Arctic Ocean Atlantic water layer on Siberian shelf hydrography [J]. Journal of Geophysical Research: Oceans, 2010, 115(C8). DOI:10.1029/2009JC006020.
doi: 10.1029/2009JC006020    
53 Dmitrenko I A, Polyakov I V, Kirillov S A, et al. Seasonal variability of Atlantic water on the continental slope of the Laptev Sea during 2002-2004 [J]. Earth and Planetary Science Letters, 2006, 244(3/4): 735-743.
54 Baumann T M, Polyakov I V, Pnyushkov A V, et al. On the seasonal cycles observed at the continental slope of the Eastern Eurasian Basin of the Arctic Ocean [J]. Journal of Physical Oceanography, 2018, 48(7): 1 451-1 470.
55 Polyakov I. Diagnostic computations of the Arctic Ocean currents and sea level variations [J]. Izvestiya Atmospheric and Oceanic Physics, 1996, 32(5): 637-649.
56 Gudkovich Z. Relation of the ice drift in the Arctic Basin to ice conditions in the Soviet Arctic seas [J]. Proceedings of the Oceanography Commission of the USSR Academy of Science, 1961, 11:14-21.
57 Schauer U, Beszczynska-M?ller A. Problems with estimation and interpretation of oceanic heat transport-conceptual remarks for the case of Fram Strait in the Arctic Ocean [J]. Ocean Science, 2009, 5(4): 487-494.
58 PolyakoV I V, Pnyushkov A V, Rember R, et al. Mooring-based observations of double-diffusive staircases over the Laptev Sea slope [J]. Journal of Physical Oceanography, 2012, 42(1): 95-109.
59 Fer I. Weak vertical diffusion allows maintenance of cold halocline in the central Arctic [J]. Atmospheric and Oceanic Science Letters, 2009, 2(3): 148-152.
60 Timmermans M L, Toole J, Krishfield R, et al. Ice‐Tethered Profiler observations of the double‐diffusive staircase in the Canada Basin thermocline [J]. Journal of Geophysical Research: Oceans, 2008, 113(C1):163-175.
61 Shaw W, Stanton T, Mcphee M, et al. Role of the upper ocean in the energy budget of Arctic sea ice during SHEBA [J]. Journal of Geophysical Research: Oceans, 2009, 114(C6):529-545.
62 Carmack E, Polyakov I, Padman L, et al. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic [J]. Bulletin of the American Meteorological Society, 2015, 96(12): 2 079-2 105.
63 Padman L. Small-scale physical processes in the Arctic Ocean [M]//Smith Jr W O, Grebmeir J M. Coastal and Estuarine Studies, 1995: 97.
doi: 10.1002/SERIES5059    
DOI: 10.1002/SERIES5059.
doi: 10.1002/SERIES5059    
64 Rippeth T P, Lincoln B J, Y-D Lenn, et al. Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography [J]. Nature Geoscience, 2015, 8(3): 191.
65 Kelley D E. Fluxes through diffusive staircases: A new formulation [J]. Journal of Geophysical Research: Oceans, 1990, 95(C3): 3 365-3 371.
66 Padman L, Dillon T M. Vertical heat fluxes through the Beaufort Sea thermohaline staircase [J]. Journal of Geophysical Research: Oceans, 1987, 92(C10): 10 799-10 806.
67 Y-D Lenn, Wiles P, Torres‐Valdes S, et al. Vertical mixing at intermediate depths in the Arctic boundary current [J]. Geophysical Research Letters, 2009, 36(5). DOI:10.1029/2008GL036792.
doi: 10.1029/2008GL036792    
68 Polyakov I V, Padman L, Y-D Lenn, et al. Eastern Arctic Ocean diapycnal heat fluxes through large double-diffusive steps [J]. Journal of Physical Oceanography, 2019, 49(1): 227-246.
69 Sirevaag A, Fer I. Vertical heat transfer in the Arctic Ocean: The role of double‐diffusive mixing [J]. Journal of Geophysical Research: Oceans, 2012, 117(C7).DOI: 10.1029/2012JC007910.
doi: 10.1029/2012JC007910    
70 Polyakov I V, Pnyushkov A V, Rember R, et al. Winter convection transports Atlantic water heat to the surface layer in the eastern Arctic Ocean [J]. Journal of Physical Oceanography, 2013, 43(10): 2 142-2 155.
71 Dmitrenko I A, Bauch D, Kirillov S A, et al. Barents Sea upstream events impact the properties of Atlantic water inflow into the Arctic Ocean: Evidence from 2005 to 2006 downstream observations [J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56(4): 513-527.
72 Hald M, Kolstad V, Polyak L, et al. Late-glacial and Holocene paleoceanography and sedimentary environments in the St. Anna Trough, Eurasian Arctic Ocean margin [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 146(1/2/3/4): 229-249.
73 Nikiforov E G,Shpaikher A O. Regularities of Formation of Large-scale Variations of Hydrological Conditions in the Arctic Ocean [M].Leningrad:Gidrometeoizdat, 1980.
74 Sirevaag A, Fer I. Early spring oceanic heat fluxes and mixing observed from drift stations north of Svalbard [J]. Journal of Physical Oceanography, 2009, 39(12): 3 049-3 069.
75 Dmitrenko I A, Kirillov S A, Ivanov V, et al. Mesoscale Atlantic water eddy off the Laptev Sea continental slope carries the signature of upstream interaction [J]. Journal of Geophysical Research: Oceans, 2008, 113(C7). DOI: 10.1029/2007JC004491.
doi: 10.1029/2007JC004491    
76 Kirillov S A, Dmitrenko I A, Ivanov V V, et al. The influence of atmospheric circulation on the dynamics of the intermediate water layer in the eastern part of the St. Anna Trough[J]. Doklady Earth Sciences, 2012, 444(1): 630-633.
77 Dmitrenko I A, Ivanov V V, Kirillov S A, et al. Properties of the Atlantic derived halocline waters over the Laptev Sea continental margin: Evidence from 2002 to 2009 [J]. Journal of Geophysical Research: Oceans, 2011, 116(C10). DOI:10.1029/2011JC007269.
doi: 10.1029/2011JC007269    
78 Reigstad M, Wassmann P, Riser C W, et al. Variations in hydrography, nutrients and chlorophyll a in the marginal ice-zone and the central Barents Sea [J]. Journal of Marine Systems, 2002, 38(1/2): 9-29.
79 Ivanov V, Alexeev V, Koldunov N V, et al. Arctic Ocean heat impact on regional ice decay: A suggested positive feedback [J]. Journal of Physical Oceanography, 2016, 46(5): 1 437-1 456.
80 Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover [J]. Geophysical Research Letters, 2008, 35(1): L01703. DOI:10.1029/2007GL031972.
doi: 10.1029/2007GL031972    
81 Ivanov V V, Alexeev V A, Repina I, et al. Tracing Atlantic water signature in the Arctic Sea ice cover east of Svalbard[J]. Advances in Meteorology, 2012, 2012(23):1-11.
82 Polyakov I V, Walsh J E, Kwok R. Recent changes of Arctic multiyear sea ice coverage and the likely causes [J]. Bulletin of the American Meteorological Society, 2012, 93(2): 145-151.
83 Zhao J, Barber D, Zhang S, et al. Record low sea-ice concentration in the central Arctic during summer 2010 [J]. Advances in Atmospheric Sciences, 2018, 35(1): 106-115.
84 Kwok R, Cunningham G, Wensnahan M, et al. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003-2008 [J]. Journal of Geophysical Research: Oceans, 2009, 114(C7). DOI:10.1029/2009JC005312.
doi: 10.1029/2009JC005312    
85 Zhang J, Lindsay R, Steele M, et al. What drove the dramatic retreat of arctic sea ice during summer 2007[J]. Geophysical Research Letters, 2008, 35(11): L11505. DOI: 10.1029/2008GL034005.
doi: 10.1029/2008GL034005    
86 Li C, Stevens B, Marotzke J. Eurasian winter cooling in the warming hiatus of 1998-2012 [J]. Geophysical Research Letters, 2015, 42(19): 8 131-9 913.
87 Perovich D K, Richter-Menge J A, Jones K F, et al. Arctic sea-ice melt in 2008 and the role of solar heating [J]. Annals of Glaciology, 2011, 52(57): 355-359.
88 Toole J M, Timmermans M L, Perovich D K, et al. Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin [J]. Journal of Geophysical Research: Oceans, 2010, 115(C10). DOI:10.1029/2009JC005660.
doi: 10.1029/2009JC005660    
89 Rudels B, Anderson L, Jones E. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean [J]. Journal of Geophysical Research: Oceans, 1996, 101(C4): 8 807-8 821.
90 Rainville L, Lee C M, Woodgate R A. Impact of wind-driven mixing in the Arctic Ocean [J]. Oceanography, 2011, 24(3): 136-145.
91 Richter-Menge J A, Perovich D K, Pegau W S. Summer ice dynamics during SHEBA and its effect on the ocean heat content [J]. Annals of Glaciology, 2001, 33:201-206.
92 Onarheim I H, Smedsrud L H, Ingvaldsen R B, et al. Loss of sea ice during winter north of Svalbard [J]. Tellus A: Dynamic Meteorology and Oceanography, 2014, 66(1): 23 933.
93 Ivanov V V. Intensification of water exchange between the shelf and the arctic basin in conditions of ice depletion[J]. Doklady Earth Sciences, 2011, 441(1):1 533-1 536.
94 Rudels B. On the Mass Balance of the Polar Ocean,with Special Emphasis on the Fram Strait[M]. Oslo:Norsk Polarinstitutt1987.
95 Rudels B. Constraints on exchanges in the Arctic Mediterranean—Do they exist and can they be of use?[J]. Tellus A: Dynamic Meteorology and Oceanography, 2010, 62(2): 109-122.
96 Zhao Jinping, Shi Jiuxin. Research progresses and main scientific issues in studies for Arctic circumpolar boundary current [J]. Chinese Journal of Polar Research, 2004, 16(3): 159-169.
赵进平, 史久新. 北极环极边界流研究及其主要科学问题[J]. 极地研究, 2004, 16(3):159-169.
97 Zhao Jinping, Shi Jiuxin, Wang Zhaomin,et al. Arctic amplification produced by sea ice retreat and its global climate effects [J]. Advances in Earth Science, 2015, 30(9): 29-39.
赵进平, 史久新, 王召民,等. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015,30(9):29-39.
[1] 王建丰, 王玉, 王刚. 基于FVCOM数值模拟和观察资料的长江冲淡水转向机制分析[J]. 地球科学进展, 2012, 27(2): 194-201.
[2] 何琰,赵进平. 北欧海的锋面分布特征及其季节变化[J]. 地球科学进展, 2011, 26(10): 1079-1091.
阅读次数
全文


摘要