Please wait a minute...
img img
高级检索
地球科学进展  2019, Vol. 34 Issue (4): 439-448    DOI: 10.11867/j.issn.1001-8166.2019.04.0439
地球化学     
MEMS传感器在锚杆加固边坡监测中的应用研究
李文龙1,2(),高燕1,2()
1. 中山大学 地球科学与工程学院,广东 广州 510275
2. 广东省地球动力作用与地质灾害重点实验室,广东 广州 510275
Research on the Application of MEMS Sensors to Slope Monitoring Treated by Bolts
Wenlong Li1,2(),Yan Gao1,2()
1. School of Earth Sciences and Engineering,Sun Yat-sen University,Guangzhou 510275,China
2. Guangdong Province Key Laboratory of Geodynamics and Geohazards, Guangzhou 510275, China
 全文: PDF(6370 KB)   HTML
摘要:

滑坡破坏各种建筑工程,严重影响了人民生产生活以及国民经济的发展。锚杆作为边坡治理的主要手段之一,其施工质量与锚固效果难以直接监测。随着微机电系统(MEMS)技术的兴起与不断发展,MEMS传感器具有体积小、造价低和精度高等优点,使其从常规监测手段中脱颖而出,为地质工程监测提供了新的可能。通过设计模型试验,基于MEMS传感器探讨锚杆对边坡的加固作用。试验采用天然河砂,通过撒砂法堆坡,边坡坡角为45°,分有锚杆加固和无锚杆加固2组。以降雨触发滑坡,将MEMS传感器布设在边坡内部,实现对边坡内部各点的加速度、角度和角速度的实时连续监测。研究表明:当未加固边坡蠕滑开始时,边坡内部和坡脚处的加速度与角度发生渐变,边坡后缘与表面处的加速度和角度变化不明显,表明边坡蠕滑主要发生在边坡内部与坡脚处;滑坡发生时,边坡内部与坡脚处的加速度和角度率先发生突变,边坡后缘与表面的参数随后发生突变,表明砂土坡破坏的瞬间,其内部与坡脚处先发生滑动,边坡后缘与坡面随后滑动,为典型的牵引式滑坡。采用锚杆加固后,边坡只发生蠕滑,边坡内部、坡脚处与坡面的加速度和角度有明显渐变,边坡后缘的各指标几乎无变化,表明降雨条件下,加固后的边坡发生整体蠕滑,边坡坡角降低,不发生破坏。MEMS传感器能够实现低成本、高精度的连续实时监测边坡蠕滑的渐变规律,捕捉到滑坡发生时运动的明显突变,对研究边坡的滑动机制及滑坡预警有一定的应用价值,在地质工程监测领域具有广阔的应用前景。

关键词: 边坡智能监测MEMS传感器锚杆    
Abstract:

The landslide can destroy all kinds of constructions, and seriously hinder people's production and life as well as the development of national economy. Bolt is one of the main methods for slope treatment, but it is difficult to monitor its construction quality and anchoring effect directly. With the rise and development of MEMS (Micro-electro mechanical system) technology, MEMS sensors, with the advantages of small size, low cost and high precision, quickly come out from the conventional monitoring methods and provide new possibilities for the monitoring field in geological engineering. In this paper, based on MEMS sensors, a model test was designed to explore the stability of the slope after treatment by bolts. Natural river sands were used to prepare slopes with angle of 45° through the air-plluviation method. In addition, the tests were divided into two groups (with or without bolts). MEMS sensors were set up in the slope to wirelessly and continually capture the acceleration, angular velocity and angle of slope sliding triggered by simulated rainfall in real-time. It was found that: with no treatment, the acceleration and angle in the interior and the bottom of the slope gradually changed during rainfall, while those parameters in the rear and the surface of the slope had no significant change, which indicated that the slope creep mainly occurred in the interior and the bottom of the slope before failure. When landslides occurred, the movement monitoring indexes in the interior and the bottom of the slope suddenly changed, followed by those in the rear and the surface of the slope, which means that when the sandy slope slides, the interior and the bottom of the slope slides first, and then the rear and the surface of the slope surface fail. This is a typical retrogressive landslide. After the slope was treated by bolts, only creep could be observed during long-term rainfall, and the acceleration and angle in the bottom, interior and surface of the slope gradually changed, while almost no change was found in the rear of the slope, which shows that under rainfall conditions, overall creep occurs for the slope after reinforcement, the slope angle decreases, and there is no landside. The experimental results prove that MEMS sensors can realize low-cost, high-precision, continuous real-time monitoring of slope, and can capture gradual changes of movements before failure and the sudden change when landslide occurs. It should play a certain role in the study of landslide mechanism and landslide warning, and has a broad application in the field of geological engineering monitoring.

Key words: Slope    Intelligent monitoring    MEMS sensor    Bolt.
收稿日期: 2018-11-16 出版日期: 2019-05-27
ZTFLH:  P642.22  
基金资助: 国家重点研发计划项目“面向全生命周期成本的轨道交通一体化设计技术”(编号:2017YFB1201102);广东省自然科学基金项目“基于MEMS的用于地铁隧道变形监测的智能土壤研究”(编号:2018A0303130154)
通讯作者: 高燕     E-mail: liwl26@mail2.sysu.edu.cn;gaoyan25@mail.sysu.edu.cn
作者简介: 李文龙(1996-),男,内蒙古呼伦贝尔人,硕士研究生,主要从事工程地质与岩土工程研究. E-mail:liwl26@mail2.sysu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李文龙
高燕

引用本文:

李文龙,高燕. MEMS传感器在锚杆加固边坡监测中的应用研究[J]. 地球科学进展, 2019, 34(4): 439-448.

Wenlong Li,Yan Gao. Research on the Application of MEMS Sensors to Slope Monitoring Treated by Bolts. Advances in Earth Science, 2019, 34(4): 439-448.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2019.04.0439        http://www.adearth.ac.cn/CN/Y2019/V34/I4/439

分组 坡角 锚杆 模型尺寸/mm 试验图
试验A 45°
试验B 45°
表1  试验分组详情表
图1   MEMS传感器、锚杆布设位置示意图
图2  降雨模拟装置
图3  试验A、B左侧布置MEMS传感器数据监测结果
试验A 试验B
时间 试验现象 试验观测图 时间 试验现象 试验观测图
0 min 施加降雨,开始记录 0 min 施加降雨,开始记录
25~48 min 边坡后缘产生拉裂缝直至贯通,边坡底、中、顶部均产生裂缝,边坡整体向下蠕滑 30~40 min 边坡后缘产生拉裂缝直至贯通,由于安装锚杆,拉裂缝靠后
52 min 滑坡发生,最终坡角为15°,后缘拉开至距离模型箱 6 cm,坡体跨度长为1.4 m 55~60 min 边坡坡角处产生拉裂缝,边坡最终状态
60 min 停止记录,时间跨度为60 min 110 min 停止记录,时间跨度为110 min
表2  试验A和B的试验现象
图4  试验A左侧传感器数据放大图
1 Goodman R E , Kieffer D S . Behavior of rock in slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,128(8):675-654.
2 Bjerrum D L . Progressive failure in slopes of over consolidated plastic clay and clay shales[J]. Journal of the Soil Mechanics and Foundations Division, 1967,93(SM1):1-14.
3 Chowdhury R N , Dimitri A G . Probabilitic model of progressice failure of slopes[J]. Journal of the Geotechnical Engineering Division, 1982, 108(GT6):803-819.
4 Chowdhury R N , Tang W H , Sidi I . Reliability model of progressive slope failure[J]. Geotechnique,1987,37(4):467-481.
5 Ye Genfei . Experimental Study on Load Transfer Law and Anchorage Characteristics of Rock-soil Anchorage [D]. Xi'an:Xi'an University of Science and Technology, 2012.
5 叶根飞 . 岩土锚固荷载传递规律与锚固特性试验研究[D].西安:西安科技大学,2012.
6 Hou Chaojiong . Roadway Surrounding Rock Control [M]. Xuzhou: China University of Mining and Technology Press, 2013.
6 侯朝炯 .巷道围岩控制[M].徐州:中国矿业大学出版社,2013.
7 Geng Weihong , Luo Chunhua . Geotechnical engineering and its application [J]. Exploration Engineering, 1997, (4): 8-10.
7 耿卫红,罗春华 .岩土锚固工程技术及其应用[J].探矿工程,1997,(4):8-10.
8 He Ruolan , Zhang Ping , Liu Baozhu . Theoretical and numerical analysis of bolt drawing test [J]. Geotechnical Mechanics, 2006, 27(Suppl.1): 855-859.
8 贺若兰,张平,刘宝珠 .锚杆拉拔试验的理论和数值分析[J].岩土力学,2006,27(增刊1):855-859.
9 Wei Lide , Ye Zhihua , Chen Congxin . A calculation model of bolt and its application in rock slope bolt support [J]. Chinese Journal of Geotechnical Engineering, 2008,30(5): 732-738.
9 韦立德,叶志华,陈从新 . 一种锚杆计算模型及其在岩坡锚杆支护中的应用[J].岩土工程学报,2008,30(5):732-738.
10 Wei Lide , Chen Congxin . Study on numerical simulation method of three-dimensional bolt [J]. Geotechnical Mechanics, 2007, 28(Suppl.1):315-320.
10 韦立德,陈从新 . 三维锚杆数值模拟方法研究[J].岩土力学,2007,28(增刊1):315-320.
11 He Siming , Li Xinpo . Study on the action mechanism of prestressed bolt [J]. Chinese Journal of Rock Mechanics and Engineering, 2006,25 (9): 1 876-1 880.
11 何思明,李新坡 .预应力锚杆作用机制研究[J]. 岩石力学与工程学报,2006,25(9): 1 876-1 880.
12 He Siming , Tian Jinchang , Zhou Jianting . Study on load transfer characteristics of cementing prestressed anchor cable anchorage section [J]. Chinese Journal of Rock Mechanics and Engineering, 2006,25(1):117-121.
12 何思明,田金昌,周建庭 .胶结式预应力锚索锚固段荷载传递特性研究[J].岩石力学与工程学报,2006,25(1):117-121.
13 Xu Jianqiang , Yang Jianguo , Yan Zongling , et al . Intelligent safety monitoring and on-site disaster warning technology of highway slope safety [J]. Soil Engineering and Foundation, 2017,31(2):240-243.
13 徐建强,杨建国,阎宗岭,等 .公路边坡危岩智能安全监测及现场灾害报警技术[J].土工基础,2017,31(2):240-243.
14 Sun Huafen . Study on the Monitoring and Prediction of the Slope of Jian-shan Phosphate Rock [D]. Kunming:Kunming University of Science and Technology, 2014.
14 孙华芬 . 尖山磷矿边坡监测及预测预报研究[D].昆明:昆明理工大学,2014.
15 Peng Dalei , Xu Qiang , Dong Xiujun , et al . Application of UAV low-altitude photogrammetry in loess landslide investigation and evaluation[J]. Advances in Earth Science, 2017,32(3):319-330.
15 彭大雷,许强,董秀军,等 .无人机低空摄影测量在黄土滑坡调查评估中的应用[J].地球科学进展,2017,32(3):319-330.
16 Yin Jianhua , Ding Xiaoli , Yang Yuwen , et al . Conventional instrument combined with GPS automatic remote control of the slope monitoring system [J]. Chinese Journal of Rock Mechanics and Engineering, 2004,23(3): 357-364.
16 殷建华,丁晓利,杨育文,等 .常规仪器与全球定位仪相结合的全自动化遥控边坡监测系统[J].岩石力学与工程学报,2004,23(3):357-364.
17 Liang Zhigang , Chen Yunmin , Chen Renpeng , et al . The coaxial cable of the electromagnetic wave reflection technique monitoring of landslide research [J]. Chinese Journal of Geotechnical Engineering, 2005, 27(4): 453-458.
17 梁志刚,陈云敏,陈仁朋,等 .同轴电缆电磁波反射技术监测滑坡研究[J].岩土工程学报,2005,27(4):453-458.
18 Wu Xiaolan , Tu Yaqing . A new method of landslide monitoring—TDR technology analysis [J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(5):740-744.
18 邬晓岚,涂亚庆 .滑坡监测的一种新方法——TDR技术探析[J].岩石力学与工程学报,2002,21(5):740-744.
19 Qiu Dandan , Lu Xinhai , Li Pei . Monitoring and warning system of high and steep slope of DMCC based on GPS and GIS [J]. Journal of Wuhan Institute of Technology,2010,32(1):16-18.
19 邱丹丹,卢新海,李沛 .基于GPS和GIS的大冶铁矿高陡边坡监测预警系统[J].武汉工程大学学报,2010,32(1):16-18.
20 Yang Zhen . Research and Application of a New Type of Measurement Method [D]. Zhenjiang:Jiangsu University of Science and Technology, 2016.
20 杨振 . 一种新型的索力测量方法研究及应用[D].镇江:江苏科技大学,2016.
21 Sun Jian . Application of fiber Bragg grating displacement sensor in slope monitoring [J]. Industry and Mine Automation,2014,40(2):95-98.
21 孙健 .光纤光栅位移传感器在边坡监测中的应用研究[J].工矿自动化,2014,40(2):95-98.
22 Shi Bin , Xu Hongzhong , Zhang Dan , et al . Feasibility study on application of BOTDR strain monitoring technology in health diagnosis of large-scale foundation works [J]. Chinese Journal of Rock Mechanics and Engineering, 2004,23(3):493-499.
22 施斌,徐洪钟,张丹,等 . BOTDR应变监测技术应用在大型基础工程健康诊断中的可行性研究[J].岩石力学与工程学报,2004,23(3):493-499.
23 Song Xiaoyu , Gao Jun , Li Xin , et al . Urban sustainability evaluation based on remote sensing and network data support: Progress and prospect [J]. Advances in Earth Science, 2018,33(10):1 075-1 083.
23 宋晓谕,高峻,李新,等 .遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J].地球科学进展,2018,33(10):1 075-1 083.
24 Wang Shuhua . Current status and application of MEMS sensors [J]. Microelectronic Technology, 2011,48(8):516-522.
24 王淑华 .MEMS传感器现状及应用[J].微纳电子技术,2011,48(8):516-522.
25 Bachiochi J . What's the slope? Use an accelerometer to measure slope[J]. Circuit Cellar, 2007,202:72-77.
26 Abdoun T , Bennett V , Thevanayagam S , et al . Wireless MEMS-based system for real-time geotechnical instrumentation of active slopes[J]. Safety and Security Engineering III,2009(108):617-624.
27 Bennett V , Abdoun T , Shantz T , et al . Design and characterization of a compact array of MEMS accelerometers for geotechnical instrumentation[J]. Smart Structures and Systems, 2009,5(6):663-679.
28 Ooi G L , Wang Y H , Wong T W , et al . An exploratory study on using miniature sensors to monitor landslide motion[C]// 7th International Conference on Physical Modelling in Geotechnics (ICPMG 2010),
28 Zurich, Switzerland , 2010:367-372.
29 Chang D T T , Li L G , Kai C Y , et al . Study of Wireless Sensor Network (WSN) using for slope stability monitoring[C]// 2011 International Conference on Electric Technology and Civil Engineering. Lushan: IEEE, 2011: 6877-6 880.
30 Wang L , Shunsaku N , Taro U , et al . An early warning system of unstable slopes by multi-point MEMS tilting sensors and water contents[C]// Workshop on World Landslide Forum. Cham: Springer, 2017: 147-154.
31 Wang L , Shunsaku N , Ichiro S , et al . Case histories of slope failure and landslide disaster prevention by using a low cost tilt sensor monitoring system[M]// Engineering Geology for Society and Territory-Volume 2. Cham: Springer, 2015: 631-635.
32 Wang L , Shunsaku N , Taro U , et al . Distributed tilt sensors for an early warning monitoring of Earthquake-induced landslides and slope failures[C]// New Advances in Geotechnical Engineering. 2018:346-352.
33 Ikuo T , Taro U , Ichiro S , et al . Monitoring of unstable slopes by MEMS tilting sensors and its application to early warning[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2015, 26(1): 012049.
34 Mao L M , Bian J R . Design and implementation of a certain kind of long-span continuous displacement measurement system based on MEMS acceleration sensors' array shaped as a line[J]. Measurement & Control Technology, 2015(34):8-11.
35 Murakami S , Dairaku A , Komine H , et al . Monitoring system for slope stability under rainfall by using MEMS acceleration sensor IC tags[C]// IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2013, 16(1): 012024.
36 Wang C C , Chang W J , Huang A B , et al . Simplified monitoring and warning system against rainfall-induced shallow slope failures[J]. Canadian Geotechnical Journal, 2018(55):1 421-1 432.
37 Yang Z J , Shao W , Qiao J P , et al . A multi-source early warning system of MEMS based wireless monitoring for rainfall-induced landslides[J]. Applied Sciences-Basel, 2017(7). DOI: 10.3390/app7121234.
doi: 10.3390/app7121234
38 Li Xunchang . Experimental Study on Large-scale Physical Model of Landslide and Bolt Anti-slide Pile Interaction [D]. Xi'an:Chang 'an University,2011.
38 李寻昌 . 滑坡与锚杆抗滑桩相互作用的大型物理模型试验研究[D].西安:长安大学,2011.
39 Lu Yingfa , Huang Xuebin , Liu Defu . Progressive failure mechanism and stability analysis of progressive landslide [J]. Chinese Journal of Rock Mechanics and Engineering, 2016,35(2):1-48.
39 卢应发,黄学斌,刘德富 .推移式滑坡渐进破坏机制及稳定性分析[J].岩石力学与工程学报,2016,35(2):1-48.
[1] 范留明, 耿鹏超. 突变理论在边坡工程应用的研究进展[J]. 地球科学进展, 2015, 30(11): 1268-1277.
[2] 巨能攀,赵建军,邓辉,黄润秋,段海澎. 黄山高速滑移弯曲边坡变形机理分析及应急治理对策[J]. 地球科学进展, 2008, 23(5): 474-481.
[3] 谷天峰,王家鼎,路勋. 藏东南公路边坡开挖模拟及稳定性分析[J]. 地球科学进展, 2006, 21(10): 1070-1074.
[4] 黄润秋. 中国西南岩石高边坡的主要特征及其演化[J]. 地球科学进展, 2005, 20(3): 292-297.
[5] 聂德新. 岩质高边坡岩体变形参数及松弛带厚度研究[J]. 地球科学进展, 2004, 19(3): 472-477.
[6] 黄润秋,张倬元,王士天. 高边坡稳定性研究现状及发展展望[J]. 地球科学进展, 1991, 6(1): 26-31.