Please wait a minute...
img img
高级检索
地球科学进展  2018, Vol. 33 Issue (5): 445-454    DOI: 10.11867/j.issn.1001-8166.2018.05.0445
国家重点研发计划进展     
全耦合空气质量预报模式系统
安俊岭1,2(), 陈勇1, 屈玉1, 陈琦3, 庄炳亮4, 张平文5, 吴其重6, 徐勤武7, 曹乐8, 姜海梅8, 陈学舜1, 郑捷9
1.中国科学院大气物理研究所,北京 100029
2.中国科学院大学,北京 100049
3.北京大学环境科学与工程学院,北京 100871
4.南京大学大气科学学院 江苏 南京 210023
5.北京大学数学学院,北京 100871
6.北京师范大学全球变化与地球系统科学研究院,北京 100875
7.南京大学数学系,江苏 南京 210023
8.南京信息工程大学,江苏 南京 210044
9.中国科学院宁波城市环境观测研究站,浙江 宁波 315800
An Online-coupled Unified Air Quality Forecasting Model System
Junling An1,2(), Yong Chen1, Yu Qu1, Qi Chen3, Bingliang Zhuang4, Pingwen Zhang5, Qizhong Wu6, Qinwu Xu7, Le Cao8, Haimei Jiang8, Xueshun Chen1, Jie Zheng9
1.Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
2.University of the Chinese Academy of Sciences, Beijing 100049, China
3.College of Environmental Sciences and Engineering,Peking University, Beijing 100871, China
4.College of Atmospheric Science, Nanjing University, Nanjing 210023, China
5.College of Mathematics, Peking University, Beijing 100871, China
6.College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
7.Department of Mathematics, Nanjing University, Nanjing 210023, China
8.Nanjing University of Information Science and Technology, Nanjing 210044, China
9.Ningbo Urban Environment Observation and Research, Chinese Academy of Sciences, Ningbo Zhejiang 315800, China
 全文: PDF(3374 KB)   HTML
摘要:

介绍了正在研发的全耦合空气质量预报模式系统,以及目前全耦合空气质量预报模式的不足,包括稳定边界层参数化方案、新粒子生成机制及其增长过程、二次有机和无机气溶胶形成过程、污染源追踪技术、自适应网格空气质量模式、模式初值优化以及动态污染源反演等。

关键词: 空气质量预报全耦合模式非均相反应二次有机气溶胶自适应网格方法    
Abstract:

An online-coupled unified air quality forecasting model system, which is being developed, is presented and needed are improvements in the parameterization of stable atmospheric boundary layer, new particle formation and subsequent growth processes, formation of secondary organic and inorganic aerosols, pollutant source apportionment technology, an adaptive gridding air quality model, and optimization of initial conditions and dynamic retrieval of pollutant emissions in an online-coupled unified air quality forecasting model.

Key words: Air quality forecasting    Online-coupled unified model    Heterogeneous reaction    Secondary organic aerosol    Adaptive gridding method.
收稿日期: 2018-02-03 出版日期: 2018-06-13
ZTFLH:  P951  
基金资助: *国家重点研发计划项目“全耦合多尺度空气质量预报模式系统”(编号:2017YFC0209801)资助.
作者简介:

作者简介:安俊岭(1967-),男,宁夏海原人,研究员,主要从事大气环境/大气化学研究.E-mail:anjl@mail.iap.ac.cn

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
安俊岭
陈勇
屈玉
陈琦
庄炳亮
张平文
吴其重
徐勤武
曹乐
姜海梅
陈学舜
郑捷

引用本文:

安俊岭, 陈勇, 屈玉, 陈琦, 庄炳亮, 张平文, 吴其重, 徐勤武, 曹乐, 姜海梅, 陈学舜, 郑捷. 全耦合空气质量预报模式系统[J]. 地球科学进展, 2018, 33(5): 445-454.

Junling An, Yong Chen, Yu Qu, Qi Chen, Bingliang Zhuang, Pingwen Zhang, Qizhong Wu, Qinwu Xu, Le Cao, Haimei Jiang, Xueshun Chen, Jie Zheng. An Online-coupled Unified Air Quality Forecasting Model System. Advances in Earth Science, 2018, 33(5): 445-454.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2018.05.0445        http://www.adearth.ac.cn/CN/Y2018/V33/I5/445

图1  “全耦合多尺度空气质量预报模式系统”项目技术路线
图2  三维自适应网格构造和守恒差值方案设计框图
图3  自适应网格空气质量预报模式研制框图
图4  全耦合多尺度空气质量预报系统框图
[1] Seinfeld J H, Pandis S N.Atmospheric Chemistry and Physics: From Air Pollution to Climate Change[M]. New York: John Wiley & Sons, Inc., 2006.
[2] Flat?y F, Hov O, Schlager H.Chemical forecasts used for measurement flight planning during POLINAT 2[J]. Geophysical Research Letters, 2000, 27(7): 951-954.
doi: 10.1029/1999GL010805
[3] Peters L K, Berkowitz C M, Carmichael G R, et al.The current state and future direction of Eulerian models in simulating the tropospheric chemistry and transport of trace species: A review[J]. Atmospheric Environment, 1995, 29(2): 189-222.
doi: 10.1016/1352-2310(94)00235-D
[4] Russell A, Dennis R.NARSTO critical review of photochemical models and modeling[J]. Atmospheric Environment, 2000, 34(12/13/14): 2 283-2 324.
doi: 10.1016/S1352-2310(99)00468-9
[5] Zhang Y.Online coupled meteorology and chemistry models: History, current status, and outlook[J]. Atmospheric Chemistry and Physics, 2008, 8(11): 2 895-2 932.
doi: 10.5194/acpd-8-1833-2008
[6] Zhang Y, Bocquet M, Mallet V, et al.Real-time air quality forecasting, part I: History, techniques, and current status[J]. Atmospheric Environment, 2012, 60: 632-655.
doi: 10.1016/j.atmosenv.2012.06.031
[7] Han Zhiwei, Du Shiyong, Lei Xiaoen, et al.Numerical model system of urban air pollution prediction and its application[J]. China Environmental Science, 2002, 22(3): 202-206.[韩志伟, 杜世勇, 雷孝恩, 等. 城市空气污染数值预报模式系统及其应用[J]. 中国环境科学, 2002, 22(3): 202-206.]
doi: 10.3321/j.issn:1000-6923.2002.03.003
[8] Wang Zifa, Wu Qizhong, Gbaguidi A, et al.Ensemble air quality multi-model forecast system for Beijing (EMS-Beijing): Model description and preliminary application[J]. Journal of Nanjing University of Science and Technology (Natural Science Edition), 2009, 1(1): 19-26.[王自发, 吴其重, Gbaguidi A, 等. 北京空气质量多模式集成预报系统的建立及初步应用[J]. 南京信息工程大学学报:自然科学版, 2009, 1(1): 19-26.]
[9] Byun D W, Ching J K S. Science Algorithms of the EPA MODELS-3 Community Multi-scale Air Quality (CMAQ) Modeling System[M]. Washington DC: Environmental Protection Agency, 1999.
[10] Kukkonen J, Olsson T, Schultz D M, et al.A review of operational, regional-scale, chemical weather forecasting models in Europe[J]. Atmospheric Chemistry and Physics, 2012, 12(1): 1-87.
doi: 10.5194/acpd-11-5985-2011
[11] Grell G A, Peckham S E, Schmitz R, et al.Fully coupled “online” chemistry within the WRF model[J]. Atmospheric Environment, 2005, 39(37): 6 957-6 975.
doi: 10.1016/j.atmosenv.2005.04.027
[12] Wong D C, Pleim J, Mathur R, et al.WRF-CMAQ two-way coupled system with aerosol feedback: Software development and preliminary results[J]. Geoscience Model Development, 2012, 5(2): 299-312.
doi: 10.5194/gmdd-4-2417-2011
[13] Zhang Y, Bocquet M, Mallet V, et al.Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects[J]. Atmospheric Environment, 2012, 60: 656-676.
doi: 10.1016/j.atmosenv.2012.02.041
[14] Grell G A, Baklanov A.Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches[J]. Atmospheric Environment, 2011, 45(38): 6 845-6 851.
doi: 10.1016/j.atmosenv.2011.01.017
[15] Zhang Y, Karamchandani P, Glotfelty T, et al.Development and initial application of the global-through-urban weather research and forecasting model with chemistry (GU-WRF/Chem)[J]. Journal of Geophysical Research, 2012, 117: D20206. DOI: 10.1029/2012JD017966.
doi: 10.1029/2012JD017966
[16] Jacobson M Z, Kaufmann Y J, Rudich Y.Examining feedbacks of aerosols to urban climate with a model that treats 3-D clouds with aerosol inclusions[J]. Journal of Geophysical Research, 2007, 112: D24205. DOI:10.1029/2007JD008922.
doi: 10.1029/2007JD008922
[17] Kaminski J W, Neary L, Struzewska J, et al.GEM-AQ, an on-line global multiscale chemical weather modelling system: Model description and evaluation of gas phase chemistry processes[J]. Atmospheric Chemistry and Physics, 2008, 8(12): 3 255-3 281.
doi: 10.5194/acpd-7-14895-2007
[18] Wang Zifa, Xie Fuying, Wang Xiquan, et al.Development and application of nested air quality prediction modeling system[J]. Chinese Journal of Atmospheric Sciences, 2006, 30(5): 778-790.[王自发, 谢付莹, 王喜全, 等. 嵌套网格空气质量预报模式系统的发展与应用[J]. 大气科学, 2006, 30(5): 778-790.]
doi: 10.3878/j.issn.1006-9895.2006.05.07
[19] An J, Ueda H, Wang Z, et al.Simulations of monthly mean nitrate concentrations in precipitation[J]. Atmospheric Environment, 2002, 36(26): 4 159-4 171.
doi: 10.1016/S1352-2310(02)00412-0
[20] Chen H, Wang Z, Li J, et al.GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: Model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions[J]. Geoscience Model Development, 2015, 8(9): 2 857-2 876.
doi: 10.5194/gmd-8-2857-2015
[21] Zhu Rong, Xu Dahai, Meng Yanjun, et al.City air pollution numerical prediction system and its application[J]. Quarterly Journal of Applied Meteorology, 2001, 12(3): 267-277.[朱蓉, 徐大海, 孟燕君, 等. 城市空气污染数值预报系统CAPPS及其应用[J]. 应用气象学报, 2001, 12(3): 267-277.]
doi: 10.3969/j.issn.1001-7313.2001.03.002
[22] Wang H, Xue M, Zhang X, et al.Mesoscale modeling study of the interactions between aerosols and PBL meteorology during a haze episode in Jing-Jin-Ji (China) and its nearby surrounding region-Part 1: Aerosol distributions and meteorological features[J]. Atmospheric Chemistry and Physics, 2015, 15(6): 3 257-3 275.
doi: 10.5194/acp-15-3257-2015
[23] Fang Xiaoyi, Jiang Weimei, Wu Jian, et al.Study on the development of numerical model system to predict urban air quality[J]. Acta Scientiae Circumstantiae, 2004, 24(1): 111-115.[房小怡, 蒋维楣, 吴涧, 等. 城市空气质量数值预报模式系统及其应用[J]. 环境科学学报, 2004, 24(1): 111-115.]
doi: 10.3321/j.issn:0253-2468.2004.01.022
[24] Wang T, Li S, Shen F, et al. Investigations on direct Investigations on direct and indirect effect of nitrate on temperature and precipitation in China using a regional climate chemistry modeling system[J]. Journal of Geophysical Research, 2010, 115: D00K19. DOI:10.1029/2009JD013165.
[25] Fernando H J S, Weil J C. Whither the stable boundary layer? A shift in the research agenda[J]. Bulletin of the American Meteorological Society, 2010, 91(11): 1 475-1 484.
doi: 10.1175/2010BAMS2770.1
[26] Hu X M, Klein P M, Xue M.Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments[J]. Journal of Geophysical Research, 2013, 118(18): 10 490-10 505.
doi: 10.1002/jgrd.50823
[27] Kulmala M, Laaksonen A, Pirjola L.Parametrizations for sulfuric acid/water nucleation rates[J]. Journal of Geophysical Research, 1998, 103(D7): 8 301-8 308.
doi: 10.1029/97JD03718
[28] Merikanto J, Napari I, Vehkam?ki H, et al. New parameterization of sulfuric acid-ammonia-water ternary nucleation rates at tropospheric conditions[J]. Journal of Geophysical Research, 2007, 112: D15207. DOI:10.1029/2006JD007977.
doi: 10.1029/2006JD007977
[29] Yu F.Ion-mediated nucleation in the atmosphere: Key controlling parameters, implications, and look-up table[J]. Journal of Geophysical Research, 2010, 115: D03206. DOI:10.1029/2009JD012630.
doi: 10.1029/2009JD012630
[30] Chen X, Wang Z, Li J, et al. Development of a regional chemical transport model with size-resolved aerosol microphysics and its application on aerosol number concentration simulation over China[J]. Scientific Online Letters on the Atmosphere, 2014, 10: 83-87.
doi: 10.2151/sola.2014-017
[31] Wang Y, Zhang Q, Jiang J, et al.Enhanced sulfate formation during China’s severe winter haze episode in January 2013 missing from current models[J]. Journal of Geophysical Research, 2014, 119(17): 10 425-10 440.
doi: 10.1002/2013JD021426
[32] Huang X, Song Y, Zhao C, et al.Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China[J]. Journal of Geophysical Research, 2014, 119(24): 14 165-14 179.
doi: 10.1002/2014JD022301
[33] He H, Wang Y, Ma Q, et al.Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days[J]. Science Report, 2014, 4:4 172. DOI:10.1038/srep04172.
doi: 10.1038/srep04172 pmid: 3933828
[34] Hung H M, Hoffmann M R.Oxidation of gas-phase SO2 on the surfaces of acidic microdroplets: Implications for sulfate and sulfate radical anion formation in the atmospheric liquid phase[J]. Environmental Science and Technology, 2015, 49(23): 13 768-13 776.
doi: 10.1021/acs.est.5b01658
[35] Zheng B, Zhang Q, Zhang Y, et al.Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China[J]. Atmospheric Chemistry and Physics, 2015, 15(4): 2 031-2 049.
doi: 10.5194/acp-15-2031-2015
[36] Wang G, Zhang R, Gomez M E, et al.Persistent sulfate formation from London Fog to Chinese haze[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13 630-13 635.
doi: 10.1073/pnas.1616540113 pmid: 27849598
[37] Xue J, Yuan Z, Griffith S M, et al.Sulfate formation enhanced by a cocktail of high NOx, SO2, particulate matter, and droplet pH during haze-fog events in megacities in China: An observation-based modeling investigation[J]. Environmental Science and Technology, 2016, 50(14): 7 325-7 334.
doi: 10.1021/acs.est.6b00768
[38] Huang R, Zhang Y, Bozzetti C, et al.High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7 512): 218-222.
doi: 10.1038/nature13774 pmid: 25231863
[39] Guo S, Hu M, Zamora M L, et al.Elucidating severe urban haze formation in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(49): 17 373-17 378.
doi: 10.1073/pnas.1419604111 pmid: 25422462
[40] Zhang X, Wang J, Wang Y, et al.Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors[J]. Atmospheric Chemistry and Physics, 2015, 15(22): 12 935-12 952.
doi: 10.5194/acp-15-12935-2015
[41] Jiang F, Liu Q, Huang X, et al.Regional modeling of secondary organic aerosol over China using WRF/Chem[J]. Journal of Aerosol Science, 2012, 43(1): 57-73.
doi: 10.1016/j.jaerosci.2011.09.003
[42] Fu Y, Liao H.Simulation of the interannual variations of biogenic emissions of volatile organic compounds in China: Impacts on tropospheric ozone and secondary organic aerosol[J]. Atmospheric Environment, 2012, 59: 170-185.
doi: 10.1016/j.atmosenv.2012.05.053
[43] Lin J, An J, Qu Y, et al.Local and distant source contributions to secondary organic aerosol in the Beijing urban area in summer[J]. Atmospheric Environment, 2016, 124: 176-185.
doi: 10.1016/j.atmosenv.2015.08.098
[44] Han Z, Xie Z, Wang G, et al.Modeling organic aerosols over east China using a volatility basis-set approach with aging mechanism in a regional air quality model[J]. Atmospheric Environment, 2016, 124: 186-198.
doi: 10.1016/j.atmosenv.2015.05.045
[45] Jimenez J L, Canagaratna M R, Donahue N M, et al.Evolution of organic aerosols in the atmosphere[J]. Science, 2009, 326(5 959): 1 525-1 529.
doi: 10.1126/science.1180353 pmid: 20007897
[46] Chen Q, Heald C L, Jimenez J L, et al.Elemental composition of organic aerosol: The gap between ambient and laboratory measurements[J]. Geophysical Research Letters, 2015, 42(10): 4 182-4 189.
doi: 10.1002/2015GL063693
[47] Li N, Fu T, Cao J, et al.Sources of secondary organic aerosols in the Pearl River Delta region in fall: Contributions from the aqueous reactive uptake of dicarbonyls[J]. Atmospheric Environment, 2013, 76: 200-207.
doi: 10.1016/j.atmosenv.2012.12.005
[48] Liu J, Mauzerall D L, Chen Q, et al.Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(28): 7 756-7 761.
doi: 10.1073/pnas.1604537113 pmid: 27354524
[49] Zhou W, Jiang J, Duan L, et al.Evolution of submicrometer organic aerosols during a complete residential coal combustion process[J]. Environmental Science and Technology, 2016, 50(14): 7 861-7 869.
doi: 10.1021/acs.est.6b00075 pmid: 27298095
[50] Dunker A M, Yarwood G, Ortmann J P, et al.The decoupled direct method for sensitivity analysis in a three-dimensional air quality model implementation, accuracy, and efficiency[J]. Environmental Science and Technology, 2002, 36(13): 2 965-2 976.
doi: 10.1021/es0112691 pmid: 12144274
[51] Menut L, Vautard R, Beekmann M, et al.Sensitivity of photochemical pollution using the adjoint of a simplified chemistry-transport model[J]. Journal of Geophysical Research, 2000, 105(D12): 15 379-15 402.
doi: 10.1029/1999JD900953
[52] Carmichael G R, Sandu A, Potra F A.Sensitivity analysis for atmospheric chemistry models via automatic differentiation[J]. Atmospheric Environment, 1997, 31(13): 475-489.
doi: 10.1016/S1352-2310(96)00168-9
[53] Ying Q, Kleeman M J.Source contributions to the regional distribution of secondary particulate matter in California[J]. Atmospheric Environment, 2006, 40(4): 736-752.
doi: 10.1016/j.atmosenv.2005.10.007
[54] Wagstrom K M, Pandis S N, Yarwood G, et al.Development and application of a computationally efficient particulate matter apportionment algorithm in a three-dimensional chemical transport model[J]. Atmospheric Environment, 2008, 42(22): 5 650-5 659.
doi: 10.1016/j.atmosenv.2008.03.012
[55] Wang Z S, Chien C J, Tonnesen G S.Development of a tagged species source apportionment algorithm to characterize three-dimensional transport and transformation of precursors and secondary pollutants[J]. Journal of Geophysical Research, 2009, 114:D21206. DOI:10.1029/2008JD010846.
doi: 10.1029/2008JD010846
[56] Kwok R H F, Napelenok S L, Baker K R. Implementation and evaluation of PM2.5 source contribution analysis in a photochemical model[J]. Atmospheric Environment, 2013, 80: 398-407.
doi: 10.1016/j.atmosenv.2013.08.017
[57] Li Y, Lau A K H, Fung J C H, et al. Ozone Source Apportionment (OSAT) to differentiate local regional and super-regional source contributions in the Pearl River Delta region, China[J]. Journal of Geophysical Research, 2012, 117: D15305. DOI:10. 1029/2011JD017340.
doi: 10.1029/2011JD017340
[58] Wu D, Fung J C H, Yao T, et al. A study of control policy in the Pearl River Delta region by using the particulate matter source apportionment method[J]. Atmospheric Environment, 2013, 76: 147-161.
doi: 10.1016/j.atmosenv.2012.11.069
[59] Liu Zhuo, Zeng Qingcun.The preliminary application of adaptive mesh in the problems of atmosphere and ocean[J]. Chinese Journal of Atmospheric Sciences, 1994, 18(6): 641-648.[刘卓, 曾庆存. 自适应网格在大气海洋问题中的初步应用[J]. 大气科学, 1994, 18(6): 641-648.]
doi: 10.1007/BF02658170
[60] Li Hongli, Shen Tongli.A study on application of adaptive grids technique to MM5 model[J]. Journal of Nanjing Institute of Meteorology, 2015, 28(1): 44-53.[李红莉, 沈桐立. 自适应网格技术在MM5中的应用研究[J]. 南京气象学院学报, 2015, 28(1): 44-53.]
doi: 10.3969/j.issn.1674-7097.2005.01.006
[61] Tomlin A, Berzins M, Ware J, et al.On the use of adaptive gridding methods for modelling chemical transport from multi-scale sources[J]. Atmospheric Environment, 1997, 31(18): 2 945-2 959.
doi: 10.1016/S1352-2310(97)00120-9
[62] Constantinescu E M, Sandu A, Carmichael G R.Modeling atmospheric chemistry and transport with dynamic adaptive resolution[J]. Computers and Geosciences, 2008, 12(2): 133-151.
doi: 10.1007/s10596-007-9065-7
[63] Garcia-Menendez F, Yano A, Hu Y, et al.An adaptive grid version of CMAQ for improving the resolution of plumes[J]. Atmospheric Pollution Research, 2010, 1(4): 239-249.
doi: 10.5094/APR.2010.031
[64] Zheng J, Zhu J, Wang Z, et al.Towards a new multiscale air quality transport model using the fully unstructured anisotropic adaptive mesh technology of Fluidity (version 4.1.9)[J]. Geoscience Model Development, 2015, 8(10): 3 421-3 440.
doi: 10.5194/gmd-8-3421-2015
[65] Bocquet M, Elbern H, Eskes H, et al.Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models[J]. Atmospheric Chemistry and Physics, 2015, 15(10): 5 325-5 358.
doi: 10.5194/acp-15-5325-2015
[66] Elbern H, Schmidt H.A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling[J]. Journal of Geophysical Research, 1999, 104(D15): 18 583-18 598.
doi: 10.1029/1999JD900280
[67] Carmichael G R, Sandu A, Chai T, et al.Predicting air quality: Improvements through advanced methods to integrate models and measurements[J]. Journal of Computational Physics, 2008, 227(7): 3 540-3 571.
doi: 10.1016/j.jcp.2007.02.024
[68] Pagowski M, Grell G A, McKeen S A, et al. Three-dimensional variational data assimilation of ozone and fine particulate matter observations: some results using the Weather Research and Forecasting-Chemistry model and Grid-point Statistical Interpolation[J]. Quarterly Journal of Royal Meteorological Society, 2010, 136(653): 2 013-2 024.
[69] Elbern H, Strunk A, Schmidt H, et al.Emission rate and chemical state estimation by 4-dimensional variational inversion[J]. Atmospheric Chemistry and Physics, 2007, 7(14): 3 749-3 769.
doi: 10.5194/acpd-7-1725-2007
[70] Niu T, Gong S, Zhu G, et al.Data assimilation of dust aerosol observations for the CUACE/dust forecasting system[J]. Atmospheric Chemistry and Physics, 2008, 8(13): 3 473-3 482.
doi: 10.5194/acpd-7-8309-2007
[71] Lin C, Wang Z, Zhu J.An Ensemble Kalman Filter for severe dust storm data assimilation over China[J]. Atmospheric Chemistry and Physics, 2008, 8(11): 2 975-2 983.
doi: 10.5194/acpd-7-17511-2007
[72] Dai T, Schutgens N A J, Goto D, et al. Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model[J]. Environmental Pollution, 2014, 195: 319-329.
doi: 10.1016/j.envpol.2014.06.021 pmid: 25017412
[73] Zang Z, Hao Z, Li Y, et al.Background error covariance with balance constraints for aerosol species and applications in variational data assimilation[J]. Geoscience Model Development, 2016, 9(8): 2 623-2 638.
doi: 10.5194/gmdd-8-10053-2015
[74] Xu X, Xie L, Cheng X, et al.Application of an adaptive nudging scheme in air quality forecasting in China[J]. Journal of Applied Meteorology and Climatology, 2008, 47(8): 2 105-2 114.
doi: 10.3200/AEOH.60.4.223-228
[75] Tang X, Zhu J, Wang Z, et al.Improvement of ozone forecast over Beijing based on ensemble Kalman filter with simultaneous adjustment of initial conditions and emissions[J]. Atmospheric Chemistry and Physics, 2011, 11(24): 12 901-12 916.
doi: 10.5194/acp-11-12901-2011
[76] Liu Feng, Hu Fei, Zhu Jiang.Optimization of the spatial distribution of multiple industry emission sources using the adjoint method[J]. Science in China (Series D), 2005, 35(1): 64-71.[刘峰, 胡非, 朱江. 用伴随方法求解多个工业污染源优化布局问题[J]. 中国科学:D辑, 2005, 35(1): 64-71.]
[1] 白晓平,李红,方栋,胡非,FrancescaCostabile,王芬娟. 资料同化在空气质量预报中的应用[J]. 地球科学进展, 2007, 22(1): 66-73.