地球科学进展 ›› 2013, Vol. 28 ›› Issue (3): 337 -346. doi: 10.11867/j.issn.1001-8166.2013.03.0337

综述与评述 上一篇    下一篇

太平洋板块形成以来的中国东部构造动力学背景
包汉勇 1,2,郭战峰 1,张罗磊 3,黄亚平 4   
  1. 1.中石化江汉油田勘探开发研究院,湖北 武汉 430223;2.同济大学海洋地质国家重点实验室,上海 200092;3.东京大学地震研究所,东京  1130032, 日本;
    4.中国矿业大学资源与地球科学学院,江苏 徐州 221116
  • 收稿日期:2012-07-30 修回日期:2012-12-29 出版日期:2013-03-10
  • 基金资助:

    国家自然科学基金项目“西太平洋暖池与东亚古环境:沉积记录的海陆对比”(编号:40621063);国家油气重大专项项目“南方海相层系油气成藏与富集规律研究”(编号:2011ZX05005-003)资助.

Tectonic Dynamics of Eastern China Since the Formation of the Pacific Plate

Bao Hanyong 1,2, Guo Zhanfeng 1, Zhang Luolei 3, Huang Yaping 4   

  1. 1. Exploration and Development Research Institute Sinopec Jianghan Oilfield, Wuhan 430223, China;2. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China;3. Earthquake Research Institute, University of Tokyo, Tokyo 1130032, Japan;4. School of Resource and Earth Science, China University of Mining and Technology, Xuzhou 221116, China
  • Received:2012-07-30 Revised:2012-12-29 Online:2013-03-10 Published:2013-03-10

构造动力学研究是分析区域构造、沉积演化、岩浆活动及矿产分布的重要前提,前人研究证实自太平洋板块形成以来中国东部构造动力学背景发生了多次转变,但对于具体的转换机制还缺乏深入研究。为此,首先基于对近年来发表的同位素年龄和古地磁数据的系统收集和整理,对太平洋板块形成以来围限中国东部的太平洋板块、印度板块和菲律宾海板块等的形成年代、漂移轨迹和速率变化规律进行了详细梳理。然后依据这3大板块及其周缘板块的运动学规律,结合区域上的构造变形特征,将太平洋板块形成以来的中国东部构造动力学背景划分为:中侏罗世—早白垩世((175~170)~(145±5),(145±5)~125和125~95 Ma BP)、晚白垩世—古近纪(95~80,80~43和43~23 Ma BP)和新近纪—第四纪(23~10 Ma BP和10 Ma BP至今)等多个阶段。指出中国东部中侏罗世—早白垩世为压扭性背景,晚白垩世—古近纪则转为伸展拉张背景,到了新近纪—第四纪又转变为挤压背景,并对这3大阶段不同时期构造动力学背景作了进一步的论述。

Tectonic dynamics is very important to the analysis of regional tectono-sedimentary evolution, volcanicmagmatic action and metallogenic regularity. Although a lot of research have proved that the tectonic dynamics had changed many times since the development of the Pacific plate, the varied mechanics  needs  to be explored deeply. In this paper, based on the collecting and sorting of the isotopic age and paleomagnetic data published recently, the drift trajectories and velocities of the Pacific plate, India plate and Philippines Sea plate since its distributions near the eastern China, are analyzed firstly. And then, according to the kinematics characteristics of these three main plates, as well as the regional tectonic deformation features, since the formation of the Pacific plate, the tectonics dynamics background of  eastern China can be divided into three stages: The Middle JurassicEarly Cretaceous ((175~170)~(145±5) Ma, (145±5)~125 Ma and (125~95) Ma BP), the late Cretaceous-Paleogene (95~80 Ma, 80~43 Ma and 43~23 Ma BP) and the Neogene-Quaternary 23~10 Ma BP and 10 Ma BP to present). It is pointed out in the paper that the tectonic dynamics mechanics of eastern China in the Middle Jurassic-Early Cretaceous are compressshearing,  changed to stretching and extension in the late CretaceousPaleogene, and then turned to compression in the Neogene-Quaternary is point out, and the specific changes in these three tectonic dynamic stages are discussed in detail at last.

中图分类号: 

[1]Shu Liangshu, Zhou Xinmin. Late Mesozoic tectonism of southeast China[J]. Geological Review, 2002, 48(3): 249-260.[舒良树, 周新民. 中国东南部晚中生代构造作用[J]. 地质论评, 2002, 48(3): 249-260.]



[2]Hilde T W, Uyeda C S, Kroenke L. Evolution of the western Pacific and its Margin[J]. Tectonophyiscs, 1977, 38: 145-165.



[3]Nakanishi M, Tamaki K, Kobayashi K. A new Mesozoic isochron chart of the north western Pacific Ocean: Paleomagnetic and tectonic implications[J]. Geophysical Research Letters, 1992, 19: 693-696.



[4]Smith A D. A plate model for Jurassic to Recent intraplate volcanism in the Pacific Ocean Basin[C]∥Foulger G R, Jurdy D M,eds.  Plates, Plumes, and Planetary Processes. Geological Society of America Special Papers, 2007, 430: 471-495.



[5]Koppers A A P, Staudigel H, Duncan R A. High-resolution



40Ar/39Ar dating of the oldest oceanic basement basalts in the western Pacific Basin[J]. Geochemistry Geophysics Geosystems, 2003, 4(11): 8 914.



[6]Bartolini A, Larson R L. Pacific microplate and the Pangea supercontinent in the Early to Middle Jurassic[J]. Geology, 2001, 29(8): 735-738.



[7]Koppers A P, Morgan J P, Morgan J W, et al. Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails[J]. Earth and Planetary Science Letters, 2001, 185: 237-252.



[8]Engebretson D C, Cox A, Gordon R G. Relative Motions between Oceanic and Continental Plates in the Pacific Basin[M]. Boulder, Colo: Geological Society of America, 1985.



[9]Northrup C, Royden L, Burchfoel B. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern Margin of Eurasia[J]. Geology, 1995, 23(8): 719-722.



[10]Cottrell R D, Tarduno J A. Late cretaceous true polar wander: No so fast[J]. Science, 2000, 288: 2 283.



[11][JP3]Tarduno J A,Cottrell R D.Paleomagnetic evidence for motion of the Hawaiian hotspot during formation of the Emperor seamounts[J].Earth and Planetary Science Letters,1997,153(3/4):171-180.[JP]



[12]Palfy J, Smith P L, Mortensen J K. A revised numeric time scale for the Jurassic[J]. Canadian Journal of Earth Sciences, 2000, 37: 932-944.



[13]Ali J R, Aitchison J C. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166-35 Ma) [J]. Earth-Science Reviews, 2008, 88: 145-166.



[14]Schettino A, Scotese C R. New internet software aids paleomagnetic analysis and plate tectonic reconstructions[J]. Eos Transactions, 2001, 82: 530-536.



[15]Brown B J, Müller R D, Gaina C, et al. Formation and evolution of Australian passive Margins: Implications for locating the boundary between continental and oceanic crust[C]∥Hillis R R, Muller R D, eds. Evolution and Dynamics of the Australian Plate. Geological Society of America Special Papers, 2003, 372: 223-243.



[16]Storey M, Mahoney J J, Saunders A D, et al. Timing of hot-spot related volcanism and the breakup of Madagascar[J]. Science, 1995, 267: 852-855.



[17]Ali J R, Aitchison J C. Greater India[J]. Earth-Science Reviews, 2005, 72: 169-188.



[18]Clift D, Degnan P J, Hannigan R, et al. Sedimentary and geochemical evolution of the Dras forearc basin, Indus suture, Ladakh Himalaya, India[J]. Geological Society of America Bulletin, 2000, 112(3): 450-466.



[19]Aitchison J C, Ali J R, Davis A M. When and where did India and Asia collide?[J]. Journal of Geophiscal Research, 2007, 112: 1-19.



[20]Molnar P, Stock J M. Slowing of India’s convergence with Eurasia since 20Ma and its implications for Tibetan Mantle dynamics[J]. Tectonics, 2009, 28: 1-11.



[21]Lee T, Lawver L A. Cenozoic plate reconstruction of Southeast Asia[J]. Tectonophysics, 1995, 251: 85-138.



[22][JP2]Willems H,Zhou Z,Zhang B.Stratigraphy of the upper cretaceous and lower tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China)[J].Geological Rundsche,1996,85:723-754.[JP]



[23]Ding Lin, Zhong Dalai. The characteristics and tectonic significance of high-pressure granulite in south Jiabawafeng of Tibet[J]. Science in China (Series D), 1999, 29(5): 385-397.[丁林, 钟大赉. 西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义[J]. 中国科学:D辑, 1999, 29(5): 385-397.]



[24]Patriat P, Achache J. India-Eurasia collision chronology has implications for crustal shortening and driving mechanisms of plates[J]. Nature,1984, 311: 615-621.



[25]Zhu Dicheng, Pan Guitang, Mo Xuanxue, et al. The age of collision between India and Eurasia[J]. Advances in Earth Science,2004, 19(4):564-571.[朱弟成, 潘桂棠, 莫宣学, 等. 印度大陆和欧亚大陆的碰撞时代[J]. 地球科学进展, 2004, 19(4):564-571.]



[26]Leech M L, Singh S, Jain A K, et al. The onset of India-Asia continental collision: Early steep subduction required by the timing of UHP metamorphism in the western Himalaya[J]. Earth and Planetary Science Letters, 2005, 234: 83-97.



[27]Copley A, Avouac J P, Royer J Y. India-Asia collision and the Cenozoic slowdown of the Indian plate: Implications for the forces driving plate motions[J]. Journal of Geophysical Research, 2010,115, B03410, doi:10.1029/2009JB006634.



[28]Deschamps A, Monie P, Lallemand S, et al. Evidence for Early Cretaceous oceanic crust trapped in the Philippine Sea Plate[J]. Earth and Planetary Science Letters, 2000, 179: 503-516.



[29]Hilde T W C, Lee C S. Origin and evolution of the West Philippines Basin: A new interpretion[J]. Tectonophysics, 1984, 102: 85-104.



[30]Hall R J, Ali R, Anderson C D, et al. Origin and motion history of the Philippine Sea Plate[J]. Tectonophysics, 1995, 251: 229-250.



[31]Haston R B, Fuller M. Paleomagnetic data from the Philippine Sea Plate and their tectonic significance[J]. Journal of Geophysical Research, 1991, 96: 6 073-6 098.



[32]Koyama M, Cisowski S M, Pezard P. Paleomagnetic evidence for northward drift and clockwise rotation of the Izu-Bonin forearc since the Early Oligocene[J]. Proceedings of the Ocean Drilling Program, 1992, 126: 353-370.



[33]Yamazaki T, Takahashi M, Iryu Y, et al. Philippine Sea Plate motion since the Eocene estimated from paleomagnetism of seafloor drill cores and gravity cores[J]. Earth Planets Space, 2010, 62: 495-502.



[34]Sdrolias M, Roset W R, Muller R D. An expression of Philippine Sea plate rotation: The Parece Vela and Shikoku Basins[J]. Tectonophysics, 2004, 394: 69-86.



[35]Takahashi M, Saito K. Miocene intra-arc bending at an arc-arc collision zone, central Japan[J]. Island Arc, 1997, 6(2): 168-182.



[36]Kimura J I, Stern R J, Yoshida T. Reinitiation of subduction and magmatic responses in SW Japan during Neogene time[J]. Geological Society of America Bullion,2005, 117(7/8): 969-986.



[37]Chamot-Rooke N, Tamaki K, Kobayashi K. Deskewed Magnetic profiles of the Shikoku Basin and the past kinematics of the Philippine Sea Plate[J]. Eos Transactions, 1989, 70: 1 365-1 366.



[38]Yamazaki T, Okamura Y. Subducting seamounts and deformation of overriding forearc wedges around Japan[J]. Tectonophysics, 1989, 160: 207-229.



[39]Chen Xuanhua, Wang Xiaofeng, Zhang Qing, et al. Geochronologic study on the formation and evolution of Tan-lu Fault[J]. Journal of Changchun University of Science and Technology, 2000,30(3): 215-220.[陈宣华, 王小凤, 张青, 等. 郯庐断裂带形成演化的年代学研究[J]. 长春科技大学学报,2000, 30(3): 215-220.]



[40]Wang Y.The onset of the Tan-Lu fault movement in eastern China: Constraints from zircon (SHRIMP) and 40Ar/39Ar dating[J]. Terra Nova, 2006, 18: 423-431.



[41]Zhou X M, Sun T, Shen W Z, et al. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J]. Episodes,2006, 29:26-33.



[42]Dong Shuwen, Zhang Yueqiao, Long Changxing, et al. Jurassic tectonic revolution in China and new interpretation of the Yanshan movement[J]. Acta Geologica Sinica, 2007, 81(11): 1 449-1 461.[董树文, 张岳桥, 龙长兴, 等. 中国侏罗纪构造变革与燕山运动新诠释[J]. 地质学报, 2007, 81(11): 1 449-1 461.]



[43]Maruyama S, Isozaki Y, Kimura G, et al. Paleogeographic maps of the Japanese islands: Plate tectonic systhesis from 750Ma to the present[J]. Island Arc,1997, 6: 121-142.



[44]Isozaki Y, Kazumasa A, Nakama T, et al. New insight into a subduction-related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands[J]. Gondwana Research, 2010, 18: 82-105.



[45]Sun W D, Ding X, Hu Y H, et al. The golden transformation of the Cretaceous plate subduction in the west Pacific[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 533-542.



[46]Shu L S, Zhou X M, Deng P, et al. Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis[J]. Journal of Asian Earth Sciences, 2009, 34: 376-391.



[47]Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in Southeastern China: Implication for lithosphere subduction and underplating of Mafic Magmas[J]. Tectonophysics, 2000, 326: 269-287.



[48]Otofuji Y I, Matsuda T, Nohda S. Paleomagnetic evidence for the Miocene counter-clockwise rotation of Northeast Japan-rifting process of the Japan arc[J]. Earth and Planetary Science Letters, 1985, 75(2/3): 256-277.



[49]Park J O, Tokuyama H, Shinohara M, et al. Seismic record of tectonic evolution and backarc rifting in the Southern Ryukyu island arc system[J]. Tectonophysics,1998, 294: 21-42.

[1] 巫建华, 解开瑞, 吴仁贵, 郭国林, 刘帅. 中国东部中生代流纹岩—粗面岩组合与热液型铀矿研究新进展[J]. 地球科学进展, 2014, 29(12): 1372-1382.
[2] 周广胜,何奇瑾. 生态系统响应全球变化的陆地样带研究[J]. 地球科学进展, 2012, 27(5): 563-572.
[3] 吴德星,兰健. 中国东部陆架边缘海海洋物理环境演变及其环境效应[J]. 地球科学进展, 2006, 21(7): 667-672.
[4] 杨巍然,隋志龙,MatsVD. 俄罗斯贝加尔湖区伸展构造及与中国东部伸展构造对比[J]. 地球科学进展, 2003, 18(1): 45-049.
[5] 沈明洁,谢志仁,朱诚. 中国东部全新世以来海面波动特征探讨[J]. 地球科学进展, 2002, 17(6): 886-894.
[6] 赖彦斌,徐霞,王静爱,王理,于园园,杨春燕. NSTEC不同自然带土地利用/覆盖格局分析[J]. 地球科学进展, 2002, 17(2): 215-220.
[7] 徐兴旺,蔡新平,王 杰,张宝林,梁光河. 流体构造动力学及其研究现状与进展[J]. 地球科学进展, 2001, 16(3): 324-331.
[8] 史斗,刘文汇. 油气形成的构造动力学理论和油气藏勘探的地球动力学方法综述[J]. 地球科学进展, 1996, 11(5): 460-468.
[9] 郑度,卢金发. 重视和加强中国东部地区土地退化整治研究[J]. 地球科学进展, 1994, 9(5): 1-5.
阅读次数
全文


摘要