1 |
MA Qianhong, ZHANG Keli. Progresses and prospects of the research on soil erosion in Karst area of Southwest China [J]. Advances in Earth Science, 2018, 33(11): 1 130-1 141.
|
|
马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望[J]. 地球科学进展, 2018, 33(11): 1 130-1 141.
|
2 |
WEI Mengmei, FU Suhua, LIU Baoyuan. Quantitative research of water erosion on the Qinghai-Tibet Plateau [J]. Advances in Earth Science, 2021, 36(7): 740-752.
|
|
魏梦美, 符素华, 刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
|
3 |
ZHANG Guanghui. Advances and prospects for gully erosion researches [J]. Journal of Soil and Water Conservation, 2020, 34(5): 1-13.
|
|
张光辉. 切沟侵蚀研究进展与展望[J]. 水土保持学报, 2020, 34(5): 1-13.
|
4 |
FU Suhua, LIU Baoyuan. Evolution of the soil erosion model [J]. Advances in Earth Science, 2002, 17(1): 78-84.
|
|
符素华, 刘宝元. 土壤侵蚀量预报模型研究进展[J]. 地球科学进展, 2002, 17(1): 78-84.
|
5 |
ZHENG Fenli, YANG Qinke, WANG Zhanli. Water erosion prediction model [J]. Research of Soil and Water Conservation, 2004,11(4): 13-24.
|
|
郑粉莉, 杨勤科, 王占礼.水蚀预报模型研究[J].水土保持研究, 2004,11(4): 13-24.
|
6 |
GRUM B, WOLDEAREGAY K, HESSEL R, et al. Assessing the effect of water harvesting techniques on event-based hydrological responses and sediment yield at a catchment scale in northern Ethiopia using the Limburg Soil Erosion Model (LISEM) [J]. Catena, 2017, 159: 20-34.
|
7 |
APOSTEL A, KALCIC M, DAGNEW A, et al. Simulating internal watershed processes using multiple SWAT models [J]. Science of the Total Environment, 2021, 759: 143920.
|
8 |
DOUGLAS-MANKIN K R, ROY S K, SHESHUKOV A Y, et al. A comprehensive review of ephemeral gully erosion models [J]. Catena, 2020, 195: 104901.
|
9 |
ZHENG Fenli, XU Ximeng, QIN Chao. A review of gully erosion process research [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(8): 48-59, 116.
|
|
郑粉莉, 徐锡蒙, 覃超. 沟蚀过程研究进展[J]. 农业机械学报, 2016, 47(8): 48-59, 116.
|
10 |
PATTON P C, SCHUMM S A. Gully erosion, northwestern Colorado: a threshold phenomenon[J]. Geology, 1975, 3(2): 83-90.
|
11 |
LIU G, ZHENG F L, WILSON G V, et al. Three decades of ephemeral gully erosion studies [J]. Soil and Tillage Research, 2021, 212: 105046.
|
12 |
YIBELTAL M, TSUNEKAWA A, HAREGEWEYN N, et al. Morphological characteristics and topographic thresholds of gullies in different agro-ecological environments [J]. Geomorphology, 2019, 341:15-27.
|
13 |
VANWALLEGHEM T, POESEN J, NACHTERGAELE J, et al. Characteristics, controlling factors and importance of deep gullies under cropland on loess-derived soils [J]. Geomorphology, 2005, 69(1/2/3/4):76-91.
|
14 |
SAMANI A N, AHMADI H, JAFARI M, et al. Geomorphic threshold conditions for gully erosion in Southwestern Iran (Boushehr-Samal watershed) [J]. Journal of Asian Earth Sciences, 2009, 35(2):180-189.
|
15 |
WALKER S J, van DIJK A I J M, WILKINSON S N, et al. A comparison of hillslope drainage area estimation methods using high-resolution DEMs with implications for topographic studies of gullies [J]. Earth Surface Processes and Landforms, 2021, 46:2 229-2 247.
|
16 |
de GEETER S, POESEN J, VANMAERCKE M. Does the topographic threshold concept explain the initiation points of sunken lanes in the European loess belt [J]. Catena, 2020, 192:104586.
|
17 |
VANDEKERCKHOVE L, POESEN J, WIJDENES D O, et al. Thresholds for gully initiation and sedimentation in Mediterranean Europe [J]. Earth Surface Processes and Landforms, 2000, 25:1 201-1 220.
|
18 |
MAJHI A, NYSSEN J, VERDOODT A. What is the best technique to estimate topographic thresholds of gully erosion? Insights from a case study on the permanent gullies of Rarh plain, India [J]. Geomorphology, 2021, 375:107547.
|
19 |
HU Gang, WU Yongqiu, LIU Baoyuan, et al. Geomorphic threshold model for ephemeral gully incision in rolling hills with black soil in northeast China [J]. Scientia Geographica Sinica, 2006, 26(4):449-454.
|
|
胡刚, 伍永秋, 刘宝元, 等. 东北漫川漫岗黑土区浅沟和切沟发生的地貌临界模型探讨[J].地理科学, 2006, 26(4):449-454.
|
20 |
LI Binbing, ZHENG Fenli, ZHANG Peng. Geomorphic threshold determination for ephemeral gull and gully erosion areas in the loess hilly gully region [J]. Bulletin of Soil and Water Conservation, 2008, 28(5):16-20.
|
|
李斌兵, 郑粉莉, 张鹏, 等. 黄土高原丘陵沟壑区小流域浅沟和切沟侵蚀区的界定[J]. 水土保持通报, 2008, 28(5):16-20.
|
21 |
LIU Xin, WANG Chunmei, PANG Guowei, et al. Sensitive area simulation of ephemeral and permanent gullies based on slope-area relationship in the loess region[J]. Mountain Research, 2020, 38(5):658-667.
|
|
刘欣,王春梅,庞国伟,等.基于坡度—汇水面积关系的黄土浅沟与切沟沟头形成敏感区模拟[J].山地学报, 2020, 38(5):658-667.
|
22 |
GOMEZ-GUTIERREZ Á, CONOSCENTI C, ANGILERI S E, et al. Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two Mediterranean basins: advantages and limitations [J]. Natural Hazards, 2015, 79:291-314.
|
23 |
SHESHUKOV A Y, SEKALUVA L, HUTCHINSON S L. Accuracy of topographic index models at identifying ephemeral gully trajectories on agricultural fields [J]. Geomorphology, 2018, 306:224-234.
|
24 |
MEYER A, MARTÍNEZ-CASASNOVAS J A. Prediction of existing gully erosion in vineyard parcels of the NE Spain: a logistic modelling approach [J]. Soil and Tillage Research, 1999, 50(3/4):319-331.
|
25 |
LUCÀ F, CONFORTI M, ROBUSTELLI G. Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: northern Calabria, South Italy [J]. Geomorphology, 2011, 134(3/4):297-308.
|
26 |
ARABAMERI A, PRADHAN B, BUI D T. Spatial modelling of gully erosion in the Ardib River Watershed using three statistical-based techniques [J]. Catena, 2020, 190:104545.
|
27 |
JIANG C C, FAN W, YU N Y, et al. Spatial modeling of gully head erosion on the Loess Plateau using a certainty factor and random forest model [J]. Science of the Total Environment, 2021, 783:147040.
|
28 |
POLYKRETIS C, FERENTINOU M, CHALKIAS C. A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece) [J]. Bulletin of Engineering Geology and the Environment, 2015, 74(1):27-45.
|
29 |
GAROSI Y, SHEKLABADI M, POURGHASEMI H R, et al. Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping [J]. Geoderma, 2018, 330:65-78.
|
30 |
CHEN W, LEI X X, CHAKRABORTTY R, et al. Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility [J]. Journal of Environmental Management, 2021, 284:112015.
|
31 |
POURGHASEMI H R, YOUSEFI S, KORNEJADY A, et al. Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling [J]. Science of the Total Environment, 2017, 609:764-775.
|
32 |
GUTIÉRREZ Á G, SCHNABEL S, CONTADOR J F L. Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies [J]. Ecological Modelling, 2009, 220:3 630-3 637.
|
33 |
RAHMATI O, TAHMASEBIPOUR N, HAGHIZADEH A, et al. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion [J]. Geomorphology, 2017, 298:118-137.
|
34 |
LANA J C, CASTRO P D T A, LANA C E. Assessing gully erosion susceptibility and its conditioning factors in southeastern Brazil using machine learning algorithms and bivariate statistical methods: a regional approach [J]. Geomorphology, 2022, 402:108159.
|
35 |
CONOSCENTI C, AGNESI V, CAMA M, et al. Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity [J]. Land Degradation and Development, 2018, 29:724-736.
|
36 |
VANMAERCKE M, CHEN Y X, HAREGEWEYN N, et al. Predicting gully densities at sub-continental scales: a case study for the Horn of Africa [J]. Earth Surface Processes and Landforms, 2020, 45:3 763-3 779.
|
37 |
SHRUTHI R B V, KERLE N, JETTEN V, et al. Object-based gully system prediction from medium resolution imagery using Random Forests [J]. Geomorphology, 2014, 216:283-294.
|
38 |
SAMANI A N, AHMADI H, MOHAMMADI A, et al. Factors controlling gully advancement and models evaluation (Hableh Rood Basin, Iran)[J]. Water Resources Management, 2010, 24:1 531-1 549.
|
39 |
ZHAO J, VANMAERCKE M, CHEN L, et al. Vegetation cover and topography rather than human disturbance control gully density and sediment production on the Chinese Loess Plateau [J]. Geomorphology, 2016, 274:92-105.
|
40 |
WU Y Q, CHENG H. Monitoring of gully erosion on the Loess Plateau of China using a global positioning system [J]. Catena, 2005, 63(2/3):154-166.
|
41 |
LI Zhen, ZHANG Yan, SHANG Guobei, et al. Characterizing gully cross section and modeling gully volume in hilly loess region of western Shanxi Province [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6):152-159.
|
|
李镇, 张岩, 尚国琲, 等. 晋西黄土区切沟断面特征及体积估算模型[J].农业工程学报, 2018, 34(6):152-159.
|
42 |
FRANKL A, POESEN J, SCHOLIERS N, et al. Factors controlling the morphology and volume (V)-length (L) relations of permanent gullies in the northern Ethiopian Highlands [J]. Earth Surface Processes and Landforms, 2013, 38:1 672-1 684.
|
43 |
CARABALLO-ARIAS N A, CONOSCENTI C, STEFANO C D, et al. Morphometric and hydraulic geometry assessment of a gully in SW Spain [J]. Geomorphology, 2016, 274:143-151.
|
44 |
WU H Y, XU X M, ZHENG F L, et al. Gully morphological characteristics in the loess hilly-gully region based on 3D laser scanning technique [J]. Earth Surface Processes and Landforms, 2018, 43:1 701-1 710.
|
45 |
DONG Y F, XIONG D H, SU Z A, et al. The distribution of and factors influencing the vegetation in a gully in the dry-hot valley of southwest China [J]. Catena, 2014, 116:60-67.
|
46 |
YANG D, MU K, YANG H, et al. A study on prediction model of gully volume based on morphological features in the Jinsha dry-hot valley region of southwest China [J]. International Journal of Geo-Information, 2021, 10:300.
|
47 |
US Department of Agriculture. Procedures for determining rates of land damage and depreciation and volume of sediment production by gully erosion [R]. Washington, D.C.: Technical Release No. 32 (Geology), 1966.
|
48 |
WIJDENES D J, BRYAN R. Gull-head erosion processes on a semi-arid valley floor in Kenya: a case study into temporal variation and sediment budgeting [J]. Earth Surface Processes and Landforms, 2001, 26:911-933.
|
49 |
JIA Yuanyuan, ZHENG Fenli, YANG Qinke, et al. Construction of water erosion prediction model at small watershed in the loess hilly and gully region [J]. Bulletin of Soil and Water Conservation, 2004, 24(2):5-7, 16.
|
|
贾媛媛, 郑粉莉, 杨勤科, 等.黄土丘陵沟壑区小流域水蚀预报模型构建[J].水土保持通报,2004, 24(2): 5-7,16.
|
50 |
VANMAERCKE M, POESEN J, van MELE B, et al. How fast do gully headcuts retreat?[J]. Earth-Science Reviews, 2016, 154:336-355.
|
51 |
SIDORCHUK A. Dynamic and static models of gully erosion [J]. Catena, 1999, 37(3/4):401-414.
|
52 |
LI Binbing, XIAO Peiqing, YU Shutong. Numerical simulation of gully erosion of hillyslope-gully system in loess hilly and gully region [J]. Science of Soil and Water Conservation, 2012, 10(1):19-24.
|
|
李斌兵, 肖培青, 余叔同. 黄土丘陵沟壑区坡沟系统切沟侵蚀数值模拟[J]. 中国水土保持科学, 2012, 10(1):19-24.
|
53 |
POESEN J, NACHTERGAELE J, VERSTRAETEN G, et al. Gully erosion and environmental change: importance and research needs [J]. Catena, 2003, 50(2/4): 91-133.
|
54 |
TORRI D, POESEN J, ROSSI M, et al. Gully head modelling: a Mediterranean badland case study [J]. Earth Surface Processes and Landforms, 2018, 43:2 547-2 561.
|
55 |
ALLEN P M, ARNOLD J G, AUGUSTE L, et al. Application of a simple headcut advance model for gullies [J]. Earth Surface Processes and Landforms, 2018, 43:202-217.
|
56 |
WELLS R R, MOMM H G, RIGBY J R. An empirical investigation of gully widening rates in upland concentrated flows [J]. Catena, 2013, 101:114-121.
|
57 |
QIN C, ZHENG F L, WELLS R R, et al. A laboratory study of channel sidewall expansion in upland concentrated flows [J]. Soil and Tillage Research, 2018, 178:22-31.
|
58 |
ZHANG Guanghui. Understanding sediment connectivity from soil erosion perspective [J]. Advances in Water Science, 2021, 32(2):295-308.
|
|
张光辉. 从土壤侵蚀角度诠释泥沙连通性[J]. 水科学进展, 2021, 32(2): 295-308.
|
59 |
HANCOCK G R, WILLGOOSE G R. Predicting gully erosion using landform evolution models: insights from mining landforms [J]. Earth Surface Processes and Landforms, 2021, 46:3 271-3 290.
|
60 |
TEMMERMAN S, BOUMA T J, van de KOPPEL J, et al. Vegetation causes channel erosion in a tidal landscape [J]. Geology, 2007, 35(7):631-634.
|
61 |
HOOBER D, SVORAY T, COHEN S. Using a landform evolution model to study ephemeral gullying in agricultural fields: the effects of rainfall patterns on ephemeral gully dynamics [J]. Earth Surface Processes and Landforms, 2017, 42:1 213-1 226.
|
62 |
HANCOCK G R, VERDON-KIDD D, LOWRY J B C. Sediment output from a post-mining catchment—centennial impacts using stochastically generated rainfall [J]. Journal of Hydrology, 2017, 544:180-194.
|
63 |
RENGERS F, LUNACEK M, TUCKER G. Application of an evolutionary algorithm for parameter optimization in a gully erosion model [J]. Environmental Modelling and Software, 2016, 80:297-305.
|