地球科学进展 ›› 2022, Vol. 37 ›› Issue (6): 551 -562. doi: 10.11867/j.issn.1001-8166.2022.032

综述与评述    下一篇

切沟侵蚀预报研究进展与展望
张光辉 1 , 2( ), 杨扬 1 , 2, 符素华 1 , 2, 张岩 3   
  1. 1.北京师范大学地表过程与资源生态国家重点实验室,北京 100875
    2.北京师范大学 地理科学学部,北京 100875
    3.北京林业大学水土保持学院,北京 100083
  • 收稿日期:2022-03-11 修回日期:2022-05-18 出版日期:2022-06-10
  • 基金资助:
    国家自然科学基金重点项目“黄土高原植被恢复影响切沟侵蚀的动力机制与模拟(42130701)

Advances and Prospects of Gully Erosion Prediction

Guanghui ZHANG 1 , 2( ), Yang YANG 1 , 2, Suhua FU 1 , 2, Yan ZHANG 3   

  1. 1.State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
    2.Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
    3.School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
  • Received:2022-03-11 Revised:2022-05-18 Online:2022-06-10 Published:2022-06-20
  • About author:ZHANG Guanghui (1969-), male, Jingning County, Gansu Province, Professor. Research areas include soil erosion, soil and water conservation. E-mail: ghzhang@bnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China “The dynamic mechanism of vegetation resto ration affecting on gully erosion and simulation on the Loess Plateau”(42130701)

切沟侵蚀是重要的土壤侵蚀类型,是小流域侵蚀泥沙的主要来源。准确预报切沟侵蚀空间分布及其强度的时空变化,对于优化小流域水土保持措施配置、维持区域粮食产能和保障区域生态安全,具有重要的理论和实践意义。地形临界模型、敏感性评价、切沟形态特征经验关系、侵蚀预报模型和景观演变模型是预测切沟发育部位、评价发育概率或估算切沟侵蚀强度的主要方法。从这些方法的基本思路与原理出发,系统分析了相关研究进展,对比了研究结果的差异并评价了各方法的优缺点。未来研究需聚焦切沟监测方法优化与数据积累、切沟演变过程与数据可比性、预报方法遴选及区域适宜性、经验模型研发与参数区域分异,以及切沟侵蚀机理研究与过程模型研发,从而为促进切沟侵蚀预报研究、阻控切沟侵蚀、保障区域社会经济可持续发展提供技术支撑。

Gully erosion is an important type of soil erosion and is considered the dominant sediment source in small watersheds. Accurately predicting the spatial distribution of gully erosion and spatiotemporal variation of erosion intensity is critical for optimizing soil and water conservation measures in small watersheds, promoting regional food production, and maintaining regional ecological security. Topographic threshold models, susceptibility assessments, morphological features, erosion prediction models, and landscape evolution models are the main techniques for the location prediction of gully initiation, probability evaluation of gully erosion, and estimation of gully erosion intensity. Based on the fundamentals and principles of these methods, the findings of related studies are systematically compared and reviewed, and the advantages and disadvantages of each method are determined. Future research should focus on the optimization of gully measurements and the accumulation of monitoring data, the processes of gully erosion and the comparability of related data, the selection of prediction models and their applicable regions, the development of empirical models and variability of related parameters among various regions, and the gully erosion mechanisms and the development of process-based gully erosion models. Therefore, the proposed research provides technical foundations for mitigating gully erosion and insurance for sustainable development of regional society and economics.

中图分类号: 

图1 不同土壤质地(a)和不同土地利用类型(b)的切沟侵蚀地形临界模型对比
Fig. 1 Topographic thresholds for gully erosionadifferent soil textures andbdifferent land use types
图2 切沟侵蚀敏感性评价流程
Fig. 2 Workflow for gully erosion susceptibility evaluation
图3 典型研究区的切沟体积与长度经验关系比较
and length in typical regions
Fig. 3 Empirical relationships between gully volume
1 MA Qianhong, ZHANG Keli. Progresses and prospects of the research on soil erosion in Karst area of Southwest China [J]. Advances in Earth Science, 2018, 33(11): 1 130-1 141.
马芊红, 张科利. 西南喀斯特地区土壤侵蚀研究进展与展望[J]. 地球科学进展, 2018, 33(11): 1 130-1 141.
2 WEI Mengmei, FU Suhua, LIU Baoyuan. Quantitative research of water erosion on the Qinghai-Tibet Plateau [J]. Advances in Earth Science, 2021, 36(7): 740-752.
魏梦美, 符素华, 刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
3 ZHANG Guanghui. Advances and prospects for gully erosion researches [J]. Journal of Soil and Water Conservation, 2020, 34(5): 1-13.
张光辉. 切沟侵蚀研究进展与展望[J]. 水土保持学报, 2020, 34(5): 1-13.
4 FU Suhua, LIU Baoyuan. Evolution of the soil erosion model [J]. Advances in Earth Science, 2002, 17(1): 78-84.
符素华, 刘宝元. 土壤侵蚀量预报模型研究进展[J]. 地球科学进展, 2002, 17(1): 78-84.
5 ZHENG Fenli, YANG Qinke, WANG Zhanli. Water erosion prediction model [J]. Research of Soil and Water Conservation, 2004,11(4): 13-24.
郑粉莉, 杨勤科, 王占礼.水蚀预报模型研究[J].水土保持研究, 2004,11(4): 13-24.
6 GRUM B, WOLDEAREGAY K, HESSEL R, et al. Assessing the effect of water harvesting techniques on event-based hydrological responses and sediment yield at a catchment scale in northern Ethiopia using the Limburg Soil Erosion Model (LISEM) [J]. Catena, 2017, 159: 20-34.
7 APOSTEL A, KALCIC M, DAGNEW A, et al. Simulating internal watershed processes using multiple SWAT models [J]. Science of the Total Environment, 2021, 759: 143920.
8 DOUGLAS-MANKIN K R, ROY S K, SHESHUKOV A Y, et al. A comprehensive review of ephemeral gully erosion models [J]. Catena, 2020, 195: 104901.
9 ZHENG Fenli, XU Ximeng, QIN Chao. A review of gully erosion process research [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016,47(8): 48-59, 116.
郑粉莉, 徐锡蒙, 覃超. 沟蚀过程研究进展[J]. 农业机械学报, 2016, 47(8): 48-59, 116.
10 PATTON P C, SCHUMM S A. Gully erosion, northwestern Colorado: a threshold phenomenon[J]. Geology, 1975, 3(2): 83-90.
11 LIU G, ZHENG F L, WILSON G V, et al. Three decades of ephemeral gully erosion studies [J]. Soil and Tillage Research, 2021, 212: 105046.
12 YIBELTAL M, TSUNEKAWA A, HAREGEWEYN N, et al. Morphological characteristics and topographic thresholds of gullies in different agro-ecological environments [J]. Geomorphology, 2019, 341:15-27.
13 VANWALLEGHEM T, POESEN J, NACHTERGAELE J, et al. Characteristics, controlling factors and importance of deep gullies under cropland on loess-derived soils [J]. Geomorphology, 2005, 69(1/2/3/4):76-91.
14 SAMANI A N, AHMADI H, JAFARI M, et al. Geomorphic threshold conditions for gully erosion in Southwestern Iran (Boushehr-Samal watershed) [J]. Journal of Asian Earth Sciences, 2009, 35(2):180-189.
15 WALKER S J, van DIJK A I J M, WILKINSON S N, et al. A comparison of hillslope drainage area estimation methods using high-resolution DEMs with implications for topographic studies of gullies [J]. Earth Surface Processes and Landforms, 2021, 46:2 229-2 247.
16 de GEETER S, POESEN J, VANMAERCKE M. Does the topographic threshold concept explain the initiation points of sunken lanes in the European loess belt [J]. Catena, 2020, 192:104586.
17 VANDEKERCKHOVE L, POESEN J, WIJDENES D O, et al. Thresholds for gully initiation and sedimentation in Mediterranean Europe [J]. Earth Surface Processes and Landforms, 2000, 25:1 201-1 220.
18 MAJHI A, NYSSEN J, VERDOODT A. What is the best technique to estimate topographic thresholds of gully erosion? Insights from a case study on the permanent gullies of Rarh plain, India [J]. Geomorphology, 2021, 375:107547.
19 HU Gang, WU Yongqiu, LIU Baoyuan, et al. Geomorphic threshold model for ephemeral gully incision in rolling hills with black soil in northeast China [J]. Scientia Geographica Sinica, 2006, 26(4):449-454.
胡刚, 伍永秋, 刘宝元, 等. 东北漫川漫岗黑土区浅沟和切沟发生的地貌临界模型探讨[J].地理科学, 2006, 26(4):449-454.
20 LI Binbing, ZHENG Fenli, ZHANG Peng. Geomorphic threshold determination for ephemeral gull and gully erosion areas in the loess hilly gully region [J]. Bulletin of Soil and Water Conservation, 2008, 28(5):16-20.
李斌兵, 郑粉莉, 张鹏, 等. 黄土高原丘陵沟壑区小流域浅沟和切沟侵蚀区的界定[J]. 水土保持通报, 2008, 28(5):16-20.
21 LIU Xin, WANG Chunmei, PANG Guowei, et al. Sensitive area simulation of ephemeral and permanent gullies based on slope-area relationship in the loess region[J]. Mountain Research, 2020, 38(5):658-667.
刘欣,王春梅,庞国伟,等.基于坡度—汇水面积关系的黄土浅沟与切沟沟头形成敏感区模拟[J].山地学报, 2020, 38(5):658-667.
22 GOMEZ-GUTIERREZ Á, CONOSCENTI C, ANGILERI S E, et al. Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two Mediterranean basins: advantages and limitations [J]. Natural Hazards, 2015, 79:291-314.
23 SHESHUKOV A Y, SEKALUVA L, HUTCHINSON S L. Accuracy of topographic index models at identifying ephemeral gully trajectories on agricultural fields [J]. Geomorphology, 2018, 306:224-234.
24 MEYER A, MARTÍNEZ-CASASNOVAS J A. Prediction of existing gully erosion in vineyard parcels of the NE Spain: a logistic modelling approach [J]. Soil and Tillage Research, 1999, 50(3/4):319-331.
25 LUCÀ F, CONFORTI M, ROBUSTELLI G. Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: northern Calabria, South Italy [J]. Geomorphology, 2011, 134(3/4):297-308.
26 ARABAMERI A, PRADHAN B, BUI D T. Spatial modelling of gully erosion in the Ardib River Watershed using three statistical-based techniques [J]. Catena, 2020, 190:104545.
27 JIANG C C, FAN W, YU N Y, et al. Spatial modeling of gully head erosion on the Loess Plateau using a certainty factor and random forest model [J]. Science of the Total Environment, 2021, 783:147040.
28 POLYKRETIS C, FERENTINOU M, CHALKIAS C. A comparative study of landslide susceptibility mapping using landslide susceptibility index and artificial neural networks in the Krios River and Krathis River catchments (northern Peloponnesus, Greece) [J]. Bulletin of Engineering Geology and the Environment, 2015, 74(1):27-45.
29 GAROSI Y, SHEKLABADI M, POURGHASEMI H R, et al. Comparison of differences in resolution and sources of controlling factors for gully erosion susceptibility mapping [J]. Geoderma, 2018, 330:65-78.
30 CHEN W, LEI X X, CHAKRABORTTY R, et al. Evaluation of different boosting ensemble machine learning models and novel deep learning and boosting framework for head-cut gully erosion susceptibility [J]. Journal of Environmental Management, 2021, 284:112015.
31 POURGHASEMI H R, YOUSEFI S, KORNEJADY A, et al. Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling [J]. Science of the Total Environment, 2017, 609:764-775.
32 GUTIÉRREZ Á G, SCHNABEL S, CONTADOR J F L. Using and comparing two nonparametric methods (CART and MARS) to model the potential distribution of gullies [J]. Ecological Modelling, 2009, 220:3 630-3 637.
33 RAHMATI O, TAHMASEBIPOUR N, HAGHIZADEH A, et al. Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion [J]. Geomorphology, 2017, 298:118-137.
34 LANA J C, CASTRO P D T A, LANA C E. Assessing gully erosion susceptibility and its conditioning factors in southeastern Brazil using machine learning algorithms and bivariate statistical methods: a regional approach [J]. Geomorphology, 2022, 402:108159.
35 CONOSCENTI C, AGNESI V, CAMA M, et al. Assessment of gully erosion susceptibility using multivariate adaptive regression splines and accounting for terrain connectivity [J]. Land Degradation and Development, 2018, 29:724-736.
36 VANMAERCKE M, CHEN Y X, HAREGEWEYN N, et al. Predicting gully densities at sub-continental scales: a case study for the Horn of Africa [J]. Earth Surface Processes and Landforms, 2020, 45:3 763-3 779.
37 SHRUTHI R B V, KERLE N, JETTEN V, et al. Object-based gully system prediction from medium resolution imagery using Random Forests [J]. Geomorphology, 2014, 216:283-294.
38 SAMANI A N, AHMADI H, MOHAMMADI A, et al. Factors controlling gully advancement and models evaluation (Hableh Rood Basin, Iran)[J]. Water Resources Management, 2010, 24:1 531-1 549.
39 ZHAO J, VANMAERCKE M, CHEN L, et al. Vegetation cover and topography rather than human disturbance control gully density and sediment production on the Chinese Loess Plateau [J]. Geomorphology, 2016, 274:92-105.
40 WU Y Q, CHENG H. Monitoring of gully erosion on the Loess Plateau of China using a global positioning system [J]. Catena, 2005, 63(2/3):154-166.
41 LI Zhen, ZHANG Yan, SHANG Guobei, et al. Characterizing gully cross section and modeling gully volume in hilly loess region of western Shanxi Province [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(6):152-159.
李镇, 张岩, 尚国琲, 等. 晋西黄土区切沟断面特征及体积估算模型[J].农业工程学报, 2018, 34(6):152-159.
42 FRANKL A, POESEN J, SCHOLIERS N, et al. Factors controlling the morphology and volume (V)-length (L) relations of permanent gullies in the northern Ethiopian Highlands [J]. Earth Surface Processes and Landforms, 2013, 38:1 672-1 684.
43 CARABALLO-ARIAS N A, CONOSCENTI C, STEFANO C D, et al. Morphometric and hydraulic geometry assessment of a gully in SW Spain [J]. Geomorphology, 2016, 274:143-151.
44 WU H Y, XU X M, ZHENG F L, et al. Gully morphological characteristics in the loess hilly-gully region based on 3D laser scanning technique [J]. Earth Surface Processes and Landforms, 2018, 43:1 701-1 710.
45 DONG Y F, XIONG D H, SU Z A, et al. The distribution of and factors influencing the vegetation in a gully in the dry-hot valley of southwest China [J]. Catena, 2014, 116:60-67.
46 YANG D, MU K, YANG H, et al. A study on prediction model of gully volume based on morphological features in the Jinsha dry-hot valley region of southwest China [J]. International Journal of Geo-Information, 2021, 10:300.
47 US Department of Agriculture. Procedures for determining rates of land damage and depreciation and volume of sediment production by gully erosion [R]. Washington, D.C.: Technical Release No. 32 (Geology), 1966.
48 WIJDENES D J, BRYAN R. Gull-head erosion processes on a semi-arid valley floor in Kenya: a case study into temporal variation and sediment budgeting [J]. Earth Surface Processes and Landforms, 2001, 26:911-933.
49 JIA Yuanyuan, ZHENG Fenli, YANG Qinke, et al. Construction of water erosion prediction model at small watershed in the loess hilly and gully region [J]. Bulletin of Soil and Water Conservation, 2004, 24(2):5-7, 16.
贾媛媛, 郑粉莉, 杨勤科, 等.黄土丘陵沟壑区小流域水蚀预报模型构建[J].水土保持通报,2004, 24(2): 5-7,16.
50 VANMAERCKE M, POESEN J, van MELE B, et al. How fast do gully headcuts retreat?[J]. Earth-Science Reviews, 2016, 154:336-355.
51 SIDORCHUK A. Dynamic and static models of gully erosion [J]. Catena, 1999, 37(3/4):401-414.
52 LI Binbing, XIAO Peiqing, YU Shutong. Numerical simulation of gully erosion of hillyslope-gully system in loess hilly and gully region [J]. Science of Soil and Water Conservation, 2012, 10(1):19-24.
李斌兵, 肖培青, 余叔同. 黄土丘陵沟壑区坡沟系统切沟侵蚀数值模拟[J]. 中国水土保持科学, 2012, 10(1):19-24.
53 POESEN J, NACHTERGAELE J, VERSTRAETEN G, et al. Gully erosion and environmental change: importance and research needs [J]. Catena, 2003, 50(2/4): 91-133.
54 TORRI D, POESEN J, ROSSI M, et al. Gully head modelling: a Mediterranean badland case study [J]. Earth Surface Processes and Landforms, 2018, 43:2 547-2 561.
55 ALLEN P M, ARNOLD J G, AUGUSTE L, et al. Application of a simple headcut advance model for gullies [J]. Earth Surface Processes and Landforms, 2018, 43:202-217.
56 WELLS R R, MOMM H G, RIGBY J R. An empirical investigation of gully widening rates in upland concentrated flows [J]. Catena, 2013, 101:114-121.
57 QIN C, ZHENG F L, WELLS R R, et al. A laboratory study of channel sidewall expansion in upland concentrated flows [J]. Soil and Tillage Research, 2018, 178:22-31.
58 ZHANG Guanghui. Understanding sediment connectivity from soil erosion perspective [J]. Advances in Water Science, 2021, 32(2):295-308.
张光辉. 从土壤侵蚀角度诠释泥沙连通性[J]. 水科学进展, 2021, 32(2): 295-308.
59 HANCOCK G R, WILLGOOSE G R. Predicting gully erosion using landform evolution models: insights from mining landforms [J]. Earth Surface Processes and Landforms, 2021, 46:3 271-3 290.
60 TEMMERMAN S, BOUMA T J, van de KOPPEL J, et al. Vegetation causes channel erosion in a tidal landscape [J]. Geology, 2007, 35(7):631-634.
61 HOOBER D, SVORAY T, COHEN S. Using a landform evolution model to study ephemeral gullying in agricultural fields: the effects of rainfall patterns on ephemeral gully dynamics [J]. Earth Surface Processes and Landforms, 2017, 42:1 213-1 226.
62 HANCOCK G R, VERDON-KIDD D, LOWRY J B C. Sediment output from a post-mining catchment—centennial impacts using stochastically generated rainfall [J]. Journal of Hydrology, 2017, 544:180-194.
63 RENGERS F, LUNACEK M, TUCKER G. Application of an evolutionary algorithm for parameter optimization in a gully erosion model [J]. Environmental Modelling and Software, 2016, 80:297-305.
[1] 崔胜辉,李方一,黄 静,于裕贤. 全球变化背景下的敏感性研究综述[J]. 地球科学进展, 2009, 24(9): 1033-1041.
阅读次数
全文


摘要