地球科学进展 ›› 2012, Vol. 27 ›› Issue (10): 1043 -1053. doi: 10.11867/j.issn.1001-8166.2012.10.1043

矿床地球化学与成矿成因 上一篇    下一篇

浙西桐村斑岩型钼(铜)矿床与德兴斑岩铜矿岩浆岩对比研究
朱玉娣 1,2,叶锡芳 3,张德会 1,2*,王科强 1,2   
  1. 1.中国地质大学地球科学与资源学院,北京 100083;2.中国地质大学/地质过程与矿产资源国家重点实验室,北京 100083;3.浙江省第三地质大队,浙江 金华 321001
  • 收稿日期:2012-07-24 修回日期:2012-08-27 出版日期:2012-10-10
  • 通讯作者: 张德会(1955-),男,河南焦作人,教授,主要从事矿床地球化学和流体包裹体研究.E-mail:zhdehui@cugb.edu.cn
  • 基金资助:

    null

A Comparative Study of Granites in Tongcun Porphyry Molybdenum-Copper Deposit in West of ZhejiangProvince and Dexing Porphyriry Copper Deposit

Zhu Yudi 1,2, Ye Xifang 3, Zhang Dehui 1,2, Wang Keqiang 1,2   

  1. 1.School of Geosciences and Resources, China University of Geosciences, Beijing 100083, China;2.State Key Laboratory of Geological Processes and Mineral Resources/China University of Geoscience, Beijing 100083, China; 3.No.3 Geological Party of Zhejiang Province,  Jinhua 321001, China
  • Received:2012-07-24 Revised:2012-08-27 Online:2012-10-10 Published:2012-10-10
  • Supported by:

    null

桐村地区与德兴矿区岩石系列相似,为高钾钙碱性系列;在岩石结构上,桐村地区花岗闪长岩为似斑状结构,德兴矿区花岗闪长斑岩为斑状结构。两者均为钙碱—碱质镁质I型花岗岩。桐村岩石富Si和K,A/CNK和K/(K+Na)值均小于德兴岩石。微量元素、同位素及岩石学特征表明桐村地区的物质来源以壳源为主,而德兴地区为有大量幔源物质参与的壳幔混合型,其原因可能与两区不同的构造位置有关。中晚侏罗世时,太平洋板块西向俯冲,下插板片发生部分熔融形成的岩浆与岩石圈地幔楔发生作用从而形成斑岩岩浆是桐村和德兴地区可能的成因模式。桐村矿床含矿斑岩的氧逸度、演化程度和地壳混染程度均较德兴斑岩铜矿高。对于同时代、近距离的岩浆岩形成如此规模悬殊的矿床还有许多问题值得研究和思考。

Both granites of Tongcun and Dexing district are highK calcalkaline, magnesian Itype granites. Texture of Tongcun granodiorite is porphyaceous while Dexing granodiorite porphyry is porphyritic. Granites in Tingcun district is characterized to be rich in Si and K, the ratio of A/CNK and K/(K+Na) is less than rocks in Dexing district. The features of trace elements, isotopes and petrolography of Tongcun and Dexing granites suggest that the origin of the first be mainly crust while the latter be crustmantle thrived and the reason might be connected with their distinct tectonic settings. It is concluded that Tingcun and Dexing porphyries were emplaced in a continental arc setting coupled with westward subduction of the palaeopacific plate. Partial melting involved the subducted slab, with generated melts interacting with the lithospheric mantle wedge during medium to late Jurassic. The fo2, evolution degree and contamination degree of Tongcun orebearing porphyry is higher than Dexing porphyry. Further study of the reason of distinct scale in coetaneous deposits in such a short distance is worthy studying.

中图分类号: 

[1]Zhu Xun, Huang Chongke, Rui Zongyao, et al. Geology of the Dexing Porphyry Copper Orefield[M]. Beijing: Geological Publishing House, 1983.[朱训, 黄崇轲, 芮宗瑶,等. 德兴斑岩铜矿[M]. 北京: 地质出版社, 1983.]

[2]Wang Qiang, Zhao Zhenhua, Jian Ping, et al. SHRIMP dating and Nd-Sr isotopic geochemistry of Dexing granodiorite[J]. Acta Petrologica Sinica,2004, 20(2):315-338.[王强, 赵振华, 简平, 等. 德兴花岗闪长斑岩SHRIMP锆石U-Pb年代学和Nd-Sr同位素地球化学[J]. 岩石学报, 2004, 20(2): 315-338.]

[3]Zhou Q, Jiang Y H, Zhao P, et al. Origin of the Dexing Cu-bearing porphyries, SE China: Elemental and Sr-Nd-Pb-Hf isotopic constraints [J]. International Geology Review, 2012, 54(5): 572-592.

[4]Qiu Junting, Yu Xinqi, Zhang Dehui, et al. LA-ICP-MS zircon U-Pb dating and geological meanings of Tongcun granite porphyry in Kaihua, west Zhejiang province[J]. Geological Bulletin of China, 2011, 30(9): 1 360-1 368.[邱骏挺, 余心起, 张德会, 等. 浙西开化地区桐村花岗斑岩LA-ICP-MS锆石U-Pb年龄及其地质意义[J]. 地质通报, 2011, 30(9): 1 360-1 368.]

[5]Zhu Yudi, Ye Xifang, Zhang Dehui, et al. Petrogeochemistry, SHRIMP dating and Sr-Nd isotopes of Tongcun porphyry Mo-Cu deposit in Kaihua, West Zhejiang province[J]. Geological Review, 2012(in press).[朱玉娣, 叶锡芳, 张德会, 等.浙西开化桐村斑岩型钼铜矿床含矿斑岩岩石地球化学、SHRIMP年代学及Sr-Nd同位素研究[J].地质论评, 2012(待刊).]

[6]Jiang Y H , Zhao P, Zhou Q, et al. Petrogenesis and tectonic implications of Early Cretaceous S-and A-type granites in the northwest of the Gan-Hang rift, SE China[J]. Lithos,2011,121:55-73.

[7]Geological Party of Jinhua, Zhejiang Province. Preliminary Discuss on Relationships between the Characteristics of Porphyries in Kaihua, West Zhejiang Province and Cu-Mo Mineralization[R]. 1982.[浙江金华地质大队专题组. 浙江开化常山一带斑岩体特征与铜钼矿化关系初步探讨[R]. 1982.]

[8]Middlemost E A K. Towards a comprehensive classification of igneous rocks and magmas[J].Earth-Science Reviews,1991, 31(2):73-87.

[9]Frost B R, Barnes C G, Collins W J,et al. A geochemical classification for granitic rocks[J]. Journal of Petrology, 2001, 42(11): 2 033-2 048.

[10]Rui Zongyao, Huang Chongke, Qi Guoming, et al. Porphyry Cu(Mo) Deposites[M]. Beijing: Geological Publishing House, 1984:1-50.[芮宗瑶, 黄崇柯, 齐国明, 等. 中国斑岩铜(钼)矿床[M].北京:地质出版社, 1984:1-50.]

[11]Rui Zongyao, Zhang Lisheng, Chen Zhenyu, et al. Source region discuss on porphyry copper deposits[J]. Acta Petrologica Sinica, 2004, 20(2): 229-238. [芮宗瑶, 张立生, 陈振宇, 等. 斑岩铜矿的原岩或源区探讨[J]. 岩石学报, 2004, 20(2): 229-238.]

[12]Rui Zongyao, Zhang Hongtao, Chen Renyi, et al. Discuss on porphyry copper deposits[J]. Mineral Deposits,2006, 25(4): 491-500.[芮宗瑶, 张洪涛, 陈仁义, 等.斑岩铜矿研究中若干问题探讨[J]. 矿床地质, 2006, 25(4): 491-500.]

[13]Zhu Jinchu, Shen Weizhou, Liu Changshi, et al. Nd-Sr isotopic characteristics and discuss on genesis of Mesozoic granitoids in South China[J]. Acta Petrological et Mineralogical,1990, 9(2): 97-105.[朱金初,沈渭洲,刘昌实,等. 华南中生代同熔系列花岗岩类的Nd-Sr同位素特征及成因讨论[J]. 岩石矿物学杂志,1990, 9(2): 97-105.]

[14]Zhu Jinchu, Jin Zhangdong, Rao Bing, et al. Fluid process of porphyry copper deposits in Tongchang, Dexing district[J]. Journal of Nanjing University (Natural Sciences), 2002, 38(3): 418-434.[朱金初,金章东,饶冰,等. 德兴铜厂铜矿流体过程[J]. 南京大学学报:自然科学, 2002, 38(3): 418-434.]

[15]Wu Liren. Mesozoic granitoids of East China[J]. Acta Petrologica Sinica, 1985, 1(1): 1-10.[吴利仁. 中国东部中生代花岗岩类[J]. 岩石学报, 1985, 1(1): 1-10. ]

[16]Boynton W V. Geochemistry of the rare earth elements: Meteorite studies[C]∥Henserson P ed. Rare Earth Element Geochemistry. Elservier, 1984: 63-114.

[17]Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications foe mantle composition and processes[J]. Geological Society, 1989, 42:313-345.

[18]Rollinson H R. Using Geochemical Data[M].New York:John hunli Wiley and Sons Inc., 1993.

[19]Chen J F, Jahn B M. Crust evolution of southern China: Nd and Sr isotopic evidence[J]. Tectonophysies,1998, 284: 101-133.

[20]Guo Chunli, Wang Denghong, Chen Yuchuan, et al. Zircon SHRIMP U-Pb dating, elemental and Nd-Sr isotopic geochemistry study of Neoproterozoic granitic complex body of West Sichuan province: Genesis and tectonic implications[J]. Acta Petrologica Sinica, 2007, 23(10): 2 457-2 470.[郭春丽, 王登红, 陈毓川, 等. 川西新元古代花岗质杂岩体的锆石SHRIMP U-Pb年龄、元素和Nd-Sr同位素地球化学研究:岩石成因与构造意义[J]. 岩石学报, 2007, 23(10): 2 457-2 470.]

[21]Gong Rixiang, Lu Chengzhong. Petrogeochemistrical characteristics and tectonic implications of high-K, alkali granitoids in west Zhejiang province[J]. Acta Petrologica Sinica, 2008, 24(10): 2 343-2 351.[龚日祥, 卢成忠. 浙西晚中生代富碱高钾花岗岩类的岩石地球化学特征及构造意义[J]. 岩石学报, 2008, 24(10): 2 343-2 351.]

[22]Shen Weizhou, Lin Hongfei, Wang Dezi, et al. Nd-Sr isotopic study of Mesozoic igneous rock in Zhejiang province[J]. Chinese Journal of Geology, 1999, 34(2): 223-232.[沈渭洲, 凌洪飞, 王德滋, 等. 浙江省中生代火成岩的Nd-Sr同位素研究[J]. 地质科学, 1999, 34(2): 223-232.]

[23]Gao S, Lin W L, Qiu Y M. Contrasting geochemicaland Sm-Nd isotopic compositions of Archaean metasedi-ments from the Kongling high-grade terrain of the Yangtzecraton: Evidence for cratonic evolution and redistribution of REE during crustal anatexis[J]. Geochimica et Cosmochimica Acta, 1999, 63: 2 071-2 088.

[24]Zhang S B, Zheng Y F, Zhao Z F, et al. Neoproterozoic anatexis of Archean litho-sphere: Geochemical evidence from felsic to mafic intrusionsat Xiaofeng in the Yangtze Gorge, South China[J]. Precambrian Research, 2008, 163: 210-238.

[25]Zhang S B, Zheng Y F, Zhao Z F, et al. Origin of TTG-like rocks from anatexis of ancient lower crust: Geochemical evidence from Neoproterozoic granitoids in south China[J].Lithos, 2009, 113:347-368.

[26]Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145: 325-394.

[27]Vervoort J D, Blichert-Toft J, Patchett P J, et al. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system[J]. Earth and Planetary Science Letters, 2000, 168: 79-99.

[28]Barry T L, Saunders A D, Kempton P D, et al. Petrogenesis of Cenozoic basalts from Mongolia: Evidence for the role of asthenospheric versus metasomatized lithospheric mantle sources[J]. Journal of Petrology, 2003,44: 55-91.

[29]Jahn B M, Zhou X H, Li J L. Formation andtectonic evolution of southeastern China and Taiwan:Isotopic and geochemical constraints[J]. Tectonophysics,1990,183:145-160.

[30]Charvet J, Lapierre H, Yu Y. Geodynamicsignificance of the Mesozoic volcanism of southeasternChina[J]. Journal of Southeast Asian Earth Sciences, 1994, 68: 387-396.

[31]Martin H, Bonin B, Capdevila R. The Kuiqiperalkaline granitic complex (SE China): Petrology and geo-chemistry[J]. Journal of Petrology, 1994, 35: 983-1 015.

[32]Lapierre H, Jahn B M, Charvet J. Mesozoic magmatism in Zhejiang province and its relation with the tectonic activities in SE China[J]. Tectonophysics, 1997, 274: 321-338.

[33]Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326: 269-287.

[34]Jiang Y H, Jin G D, Liao S Y, et al. Geochemical and Sr-Nd-Hf isotopic constraints on the ori-gin of Late Triassic granitoids from the Qinling orogen,central China: Implications for a continental arc to continent-continent collision[J]. Lithos, 2010, 117: 183-197.

[35]Condie K C. Plate Tectonics and Crustal Evolution (2nd)[M]: New York: Pergamon Press,1976.

[36]Pearce J A, Harris N B W, Tindle A G. Trace ele-ment discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25: 956-983.

[37]Blevin P L, Chappell B W. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia[J]. Transactions of the Royal Society of Edinburgh-Earth Sciences, 1992, 83: 305-316.

[38]Blevin P L. Metallogeny of granitic rocks[C]∥The Ishihara Symposium:Granites and Associated Metallogenesis.Geoscience Australia, 2003:1-4.

[39]Ray G E, Webster I C L, Ettlinger A D. The distribution of skarns in British Columbia and the chemistry and ages of their related plutonic rocks[J]. Economic Geology, 1995, 90: 920-937.

[40]Candela. Controls on ore metal ratios in granite-related ore systems—An experimental and computational approach[J].Transactions of the Royal Society of Edinburgh-Earth Sciences,1992, 83: 371-326.

[41]Hedenquist J W, Lowenstern J B. The role of magmas in the formation of hydrothermal ore-deposits[J].Nature,1994, 370:519-527.

[42]Xiao Qinghui,Deng Jinfu, Ma Daquan, et al. Thoughts and Methods of Granitic Study[M]. Beijing: Geological Publishing House, 2002: 71-96.[肖庆辉, 邓晋福, 马大铨, 等. 花岗岩研究思维与方法[M]. 北京: 地质出版社, 2002: 71-96.]

[43]Xu Wengang. The Geochemical Characteristics of the Ore-forming Fluids and Metallogenic Genesis Discussion of the Porphyry Molybdenum (Copper)Deposit of Tongcun in Kaihua, Zhejiang Province[D]. Beijing: China University of Geoscience, 2011. [徐文刚. 浙江开化桐村斑岩钼(铜)矿床成矿流体地球化学及成因讨论[D]. 北京: 中国地质大学, 2011.]

No related articles found!
阅读次数
全文


摘要