地球科学进展 ›› 2011, Vol. 26 ›› Issue (8): 822 -836. doi: 10.11867/j.issn.1001-8166.2011.08.0822

综述与评述 上一篇    下一篇

隐伏矿床勘查地球化学新进展
孙剑,陈岳龙,李大鹏   
  1. 中国地质大学(北京)地球科学与资源学院,北京100083
  • 收稿日期:2010-09-28 修回日期:2011-05-16 出版日期:2011-08-10
  • 通讯作者: 孙剑 E-mail:sunjiantc@163.com
  • 基金资助:

    中国地质调查局国土资源大调查项目“地质调查情报编译与科技成果集成”(编号:1212010561508);中国地质调查局“国外地质调查战略情报编译与专题研究”项目中的专题“国外化探技术文献编译与研究”(编号:1212011120175)资助.

New Advances in Geochemical Exploration of Concealed Deposits

Sun Jian, Chen Yuelong, Li Dapeng   

  1. School of Earth Sciences and Resources, China University of Geoscience, Beijing100083, China
  • Received:2010-09-28 Revised:2011-05-16 Online:2011-08-10 Published:2011-08-10

近年来,隐伏矿床的勘查日益受到重视,随着成矿理论和分析技术的发展,形成了众多新的地球化学勘查方法,在隐伏矿床勘查中发挥着越来越重要的作用。当前,以金属活动态测量法、地球气纳微金属测量法、电地球化学方法、活动金属离子法等一系列偏提取技术为代表的深穿透地球化学方法,能够获取深部矿体的直接信息,是隐伏矿床勘查技术上的一项重大突破。综合应用地质、地球化学、地球物理、遥感等多元信息来进行勘查的综合信息找矿方法也在隐伏矿床勘查中取得了显著的效果,是未来矿产勘查的重要发展方向。以地球化学块体这一理论概念为基础发展出的地球化学块体方法技术,以国内外近百例矿床勘查发现史为基础总结经验得出的信息找矿战略,以及以Cu、Fe、Zn等非传统同位素示踪技术为代表的新的示踪技术,代表了当前矿产勘查在理论、经验和分析技术上的新突破,开始初步应用于隐伏矿床的勘查并产生良好的效果。同时,传统的地球化学勘查手段如地下水地球化学勘查、植物地球化学勘查方法取得了新的发展,仍在隐伏矿床勘查中发挥了重要作用。综述和讨论了各种勘查地球化学方法的概念、原理、使用方法以及实际应用效果,指出了目前存在的一些问题,为勘查工作者提供了参考。

Recently, the exploration in deeply concealed deposits becomes increasingly common. With the development in the state-of-the-art metallogenic theory and analysis technique, it has stimulated the formation of the non-traditional geochemical prospecting methods. One of great breakthroughs in buried mineral deposits exploration is the advent of Deep-penetrating Exploration Geochemistry, which includes methods of the Selective Leaching of Mobile Metals (MOMEO), Mobile Metal Ions (MMI), Enzyme Leach, Electro-geochemistry methods, etc. These methods are able to measure any direct geochemical information emanating from the deeply concealed deposits. Another important advance in concealed deposit exploration is using integrated geological information for prospecting, including geologic, geophysical, geochemical and remote sensing data. This method is proved a powerful tool for deeply buried mineral deposits exploration. Some other new methods including geochemical blocks method, information exploration, and non-traditional isotope tracer techniques are starting applied to concealed deposits exploration. Besides, the methods of traditional geochemical exploration including hydrogeochemical and biogeochemical methods are experience renewed interest and achieve new development. New advances in these geochemical exploration methods are reviewed in depth, including their concepts, basis theory, application method, and results of their application. Finally, the problems in geochemical exploration are pointed out.

中图分类号: 

[1]Wang Xueqiu, Liu Zhanyuan, Bai Jinfeng, et al. Deep-penetration geochemistry-comparison studies of two concealed deposits[J].Computing Techniques for Geophysical and Geochemical Exploration,2005, 27(3): 250-255.[王学求, 刘占元, 白金峰,等. 深穿透地球化学对比研究两例[J]. 物探化探计算技术, 2005, 27(3): 250-255.]
[2]Xie Xuejin. New strategy for exploration of ore resources[J].Geophysical and Geochemical Exploration,1997, 21(6): 402-410.[谢学锦. 矿产勘查的新战略[J]. 物探与化探, 1997, 21(6): 402-410.]
[3]Xie Xuejin. Exploration geochemistry: Retrospect and prospect[J].Geology and Prospecting,2002, 38(6): 1-9.[谢学锦. 勘查地球化学: 发展史· 现状· 展望[J]. 地质与勘探, 2002, 38(6): 1-9.]
[4]Wang Xueqiu. Exploration geochemistry: Past achievements and future challenges[J].Earth Science Frontiers,2003, 10(1): 239-248.[王学求.矿产勘查地球化学: 过去的成就与未来的挑战[J]. 地学前缘, 2003, 10(1): 239248.]
[5]Moon C J, Whateley M K G, Evans A M, et al. Introduction to Mineral Exploration[M]. Alabama: Blackwell Public, 2006.
[6]Xie Xuejin. Exploration geochemistry into 21st century[J].Chinese Geology,2001, 28(4): 11-18.[谢学锦. 进入21世纪的勘查地球化学[J]. 中国地质, 2001, 28(4): 11-18.]
[7]Tang Jinrong, Cui Xilin, Shi Junfa. New progress in research on non-traditional geochemical prospecting methods[J].Geological Bulletin of China,2009, 28(2): 232-244.[唐金荣, 崔熙琳, 施俊法. 非传统化探方法研究的新进展[J]. 地质通报, 2009, 28(2): 232-244.]
[8]Cameron E M, Hamilton S M, Leybourne M I, et al. Finding deeply buried deposits using geochemistry[J].Geochemistry: Exploration, Environment, Analysis,2004, 4(1): 7-32.
[9]Kristiansson K, Malmqvist L. Evidence for nondiffusive transport of Rn in the ground and a new physical model for the transport[J]. Geophysics,1982, 47: 1 444.
[10]Antropova L V, Goldberg I S, Voroshilov N A,et al. New methods of regional exploration for blind mineralization: Application in the USSR[J].Journal of Geochemical Exploration,1992, 43(2): 157-166.
[11]Clark J R, Meier A L,  Riddle G. Enzyme leaching of surficial geochemical samples for detecting hydromorphic trace-element anomalies associated with precious-metal mineralized bedrock buried beneath glacial overburden in northern Minnesota[C]Hause D M, et al, eds. GOLD 90. Philippine: Society of Mining Engineers, 1990, 19: 189-207.
[12]Mann A W, Birrell R D, Mann A T, et al. Application of the mobile metal ion technique to routine geochemical exploration[J]. Journal of Geochemical Exploration, 1998, 61(1/3): 87-102.
[13]Wang X Q. Leaching of mobile forms of metals in overburden: Development and application[J]. Journal of Geochemical Exploration,1998, 61(1/3): 39-55.
[14]Xie Xuejin, Wang Xueqiu. Recent developments on deep penetrating geochemistry[J]. Earth Science Frontiers,2003, 10(1): 225-238.[谢学锦, 王学求. 深穿透地球化学新进展[J]. 地学前缘, 2003, 10(1): 225-238.]
[15]Wang Xueqiu. Deep penetration exploration geochemistry[J].Geophysical and Geochemical Exploration,1998, 22(3): 166-169.[王学求. 深穿透勘查地球化学[J]. 物探与化探, 1998, 22(3): 166-169.][16]Wang Xueqiu. Geochemical methods and application for giant ore deposits in concealed terrains [J]. Geophysical and Geochemical Exploration, 1998, 22(2): 81-89.[王学求. 寻找和识别隐伏大型特大型矿床的勘查地球化学理论方法与应用[J]. 物探与化探, 1998, 22(2): 81-89.]
[17]Wang Xueqiu, Liu Zhanyuan, Ye Rong, et al. Deep-penetrating geochemistry: A comparative study in the Jinwozi gold ore district, Xinjiang[J]. Geophysical and Geochemical Exploration,2003, 27(4): 247-250.[王学求, 刘占元, 叶荣,等. 新疆金窝子矿区深穿透地球化学对比研究[J]. 物探与化探, 2003, 27(4): 247-250.]
[18]Wang X, Xie X, Ye S. Concepts for geochemical gold exploration based on the abundance and distribution of ultrafine gold[J]. Journal of Geochemical Exploration,1995, 55(1/3): 93-101.
[19]Wang X, Cheng Z, Lu Y, et al. Nanoscale metals in Earthgas and mobile forms of metals in overburden in wide-spaced regional exploration for giant deposits in overburden terrains[J].Journal of Geochemical Exploration, 1997, 58(1): 63-72.
[20]Wang Xueqiu, Shen Wujun, Zhang Bimin, et al. Relationship of geochemical blocks and ore districts: Examples from Eastern Tianshan metallogenic belt,Xinjiang,China[J].Earth Science Frontiers,2007, 14(5): 116-123.[王学求, 申伍军, 张必敏,等. 地球化学块体与大型矿集区的关系——以东天山为例[J]. 地学前缘, 2007, 14(5): 116-123.]
[21]Wang Xueqiu, Chi Qinghua. Widespaced geochemical survey in arid desert terrain, a case history from the Eastern Tianshan regions, northwestern China[J]. Xinjiang Geology,2001, 19(3): 200-206.[王学求, 迟清华. 荒漠戈壁区超低密度地球化学调查与评价——以东天山为例[J]. 新疆地质, 2001, 19(3): 200-206.]
[22]Kristiansson K, Malmqvist L, Persson W. Geogas prospecting: A new tool in the search for concealed mineralizations[J]. Endeavour, 1990, 14(1): 28-33.
[23]Malmqvist L, Kristiansson K. Experimental evidence for an ascending microflow of geogas in the ground[J]. Earth and Planetary Science Letters,1984, 70: 407-416.
[24]Ren Tianxiang, Liu Yinghan, Wang Mingqi. Nanometre science and hidden mineral resources[J]. Science & Technology Review, 1995, 8(5):18-19. [任天祥, 刘应汉, 汪明启. 纳米科学与隐伏矿藏——一种寻找隐伏矿的新方法、新技术[J]. 科技导报, 1995, 8(5):1819.]
[25]Chunhan O, Juchu I, Liangquan E, et al. Experimental observation of the nanoscale particles in geogas matters and its geological significance[J]. Science in China (Series D),1998, 41(3): 325-329.
[26]Tong Chunhan. Imitative model experiment for elements transportation[J]. Nuclear Techniques,2001, 24(6): 449-455.[童纯菡. 元素迁移的模拟模型实验[J]. 核技术, 2001, 24(6): 449-455.]
[27]Wang Xueqiu, Xie Xuejin, Lu Yinxiu. Dynamic collection of geogas and its preliminary application in search for concealed deposits[J]. Geophysical and Geochemical Exploration,1995, 19(3): 161-171. [王学求, 谢学锦, 卢荫庥. 地气动态提取技术的研制及在寻找隐伏矿上的初步试验[J]. 物探与化探, 1995, 19(3): 161-171.]
[28]Mao Jingwen, Hu Ruizhong, Chen Yuchuan, et al. Large-scale Mineralization and Prediction for the Large Mineralized Clusters[M]. Beijng: Geological Publishing House, 2005.[毛景文, 胡瑞忠, 陈毓川,等. 大规模成矿作用与大型矿集区[M]. 北京: 地质出版社, 2005.]
[29]Tang Jinrong, Yang Zhongfang, Wang Mingqi, et al. Method and application of geogas measurements[J]. Geophysical and Geochemical Exploration,2004, 28(3): 193-198.[唐金荣, 杨忠芳, 汪明启,等. 地气测量方法研究及应用[J]. 物探与化探, 2004, 28(3): 193-198.]
[30]Wang Mingqi, Gao Yuyan, Zhang Deen, et al. Breakthrough in mineral exploration using geogas survey in the basin area of northern Qilian region and its significance[J]. Geophysical and Geochemical Exploration,2006, 30(1): 7-12.[汪明启, 高玉岩, 张得恩,等. 地气测量在北祁连盆地区找矿突破及其意义[J]. 物探与化探, 2006, 30(1): 7-12.]
[31]Liu Yinghan.The anomalous characteristic and the mode for prospecting ores of the nanoscal material geochemical measuement in Lashuixia copper-nickel deposit in Qinghai[J]. Geology and Prospecting,2003, 39(2): 1115.[刘应汉. 青海拉水峡铜镍矿纳米物质地球化学异常特征及找矿模型[J]. 地质与勘探, 2003, 39(2): 11-15.]
[32]Liu Yinghan, Wang Mingqi, Zhao Hengchuan. The theory and application of geogas exploration method[J]. Qinghai Guotu Jinglue,2006, 3: 41-42. [刘应汉, 汪明启, 赵恒川. 寻找隐伏矿的“地气”测量方法原理及应用前景[J]. 青海国土经略, 2006, 3: 41-42.]
[33]Ryss Y S,Goldberg I S. The partial extraction of metals (CHIM) method in mineral exploration[J]. Method and Technique,1973, 84: 5-19.
[34]Kang Ming, Luo Xianrong. Improvement and applied results of geoelectrical chemistry methods[J]. Geology and Prospecting,003, 39(5): 63-66.[康明, 罗先熔. 地电化学方法的改进及应用效果[J]. 地质与勘探, 2003, 39(5): 63-66.]
[35]Kang Ming, Luo Xianrong. The present and future of electrogeochemical method for metallic ore deposit prospecting[J]. Geological Review,2005, 51(4): 452-457.[康明, 罗先熔. 金属矿床地电化学勘查方法研究现状及前景展望[J]. 地质论评, 2005, 51(4): 452-457.]
[36]Luo Xianrong.Geoelectrochemical Propecting Methods and Searching for Deep Ore Deposits[M]. Beijing: Metallurgical Industry Publishing House, 1996. [罗先熔. 地球电化学勘查及深部找矿[M]. 北京: 冶金工业出版社, 1996.]
[37]Luo Xianrong, Yang Xiao. Research on geoelectrochemical propecting methods and searching for deep ore deposits[J].Geology and Prospecting,1989, 25(12): 43-51.[罗先熔, 杨晓. 地电化学测量找寻隐伏矿床的研究及矿预测[J]. 地质与勘探, 1989, 25(12): 43-51.]
[38]Kang Ming. Experiment and application of improved CHIM in mineral exploration[J]. Geological Bulletin of China,2009, 28(2): 250-256.[康明. 改进地电化学方法在矿区勘查中的试验与应用[J]. 地质通报, 2009, 28(2): 250-256.]
[39]Xie Xuejin. Geochemical mapping and sustainable development of the national economic[J]. Geological Bulletin of China,2003, 22(11): 863-868.[谢学锦. 2020年的勘查地球化学——从勘查地球化学到应用地球化学[J]. 地质通报, 2003, 22(11): 863-868.]
[40]Wang Shicheng, Xu Yaguang. Methods of synthetic information mineral resources prognosis[J]. Chinese Geology, 1992,(10): 12-14.[王世称, 许亚光. 综合信息成矿系列预测的基本思路与方法[J]. 中国地质, 1992,(10): 12-14.]
[41]Wang Shicheng. Theory and Method of Synthetic Information Mineral Resources Prognosis[M]. Beijing: Science Press, 2000. [王世称. 综合信息矿产预测理论与方法[M]. 北京: 科学出版社, 2000.][42]Ye Tianzhu, Xiao Ke, Yan Guangsheng. Methodology of deposit modeling and mineral resource potential assessment using integrated geological information[J]. Earth Science Frontiers, 2007, 14(5): 12-19.[叶天竺, 肖克,严光生. 矿床模型综合地质信息预测技术研究[J]. 地学前缘, 2007, 14(5): 12-19.]
[43]Zhou Jun. Synthetic Analyses of Geology, Geochemical Surveying and Remote Sensing in the Ore Exploration in Bumo Areas, Hainan[M]. Shaanxi: Shaanxi Science & Technology Press, 2005. [周军. 海南不磨金矿区地质, 化探, 遥感多元信息综合找矿研究[M]. 陕西: 陕西科学技术出版社, 2005.]
[44]Wang Shicheng, Cheng Qiuming. Modelling of gold deposit prospecting[J]. Journal of Jilin University(Earth Science Edition), 1989, 19(3): 311-316.[王世称, 成秋明. 金矿综合信息找矿模型[J]. 吉林大学学报:地球科学版, 1989, 19(3): 311-316.]
[45]Wang Shicheng. The new development of theory and method of synthetic information mineral resources prognosis[J]. Geological Bulletin of China, 2010, 29(10): 1 399-1 403.[王世称. 综合信息矿产预测理论与方法体系新进展[J]. 地质通报, 2010, 29(10): 1 399-1 403.]
[46]Cheng Yuqi, Chen Yuchuan, Zhao Yiming. Prbliminary discussion on the problems of minerogenetic series of mineral deposits[J]. Acta Geoscientica Sinica,1979, 1(1): 32-58.
[程裕淇, 陈毓川, 赵一鸣. 初论矿床的成矿系列问题[J]. 地球学报, 1979, 1(1): 32-58.]
[47]Wang Shicheng, Chen Yongqing. The theoretical system of comprehensive prognosis for gold ore-forming series[J]. Gold Geology,1995, 1(1): 1-7.[王世称, 陈永清.金矿综合信息成矿系列预测理论体系[J]. 黄金地质, 1995, 1(1): 1-7.]
[48]Wu Xiaolei, Chi Zhandong, Wang Ling, et al. Study on information prospecting about the Jinniushan Gold Deposit[J]. Gold Science and Technology, 2009, 17(2): 8-11. [吴小雷, 迟占东, 王玲,等. 金牛山金矿综合信息找矿研究[J]. 黄金科学技术, 2009, 17(2): 8-11.]
[49]Xie Xuejin. Using new concepts and new technique to look for giant mineral deposits[J]. Scientific Chinese,1995, 5(15): 13-15.[谢学锦. 用新观念与新技术寻找巨型矿床[J]. 科学中国人, 1995, 5(15): 13-15.]
[50]Xie Xuejin, Liu Dawen, Xiang Yunchuan, et al. Geochemical blocks—Development of concept and methodology[J].Chinese Geology,2002, 29(3): 225-233. [谢学锦, 刘大文, 向运川,等. 地球化学块体——概念和方法学的发展[J]. 中国地质, 2002, 29(3): 225-233.]
[51]Shi Junfa, Yao Huajun, Li Youzhi, et al. Information-based Mineral Exploration Strategy and One Hundred Mineral Exploration Case Histories [M]. Beijing: Geological Publishing House, 2005. [施俊法, 姚华军, 李友枝,等. 信息找矿战略与勘查百例 [M]. 北京: 地质出版社, 2005.]
[52]Liu Dawen, Zhou Xiaodong, Xie Xuejin. The application of geochemical block methods to evaluation of mineral resources [J].Earth Science Frontiers,2003, 10(1): 15. [刘大文, 周晓东, 谢学锦. 应用于矿产资源评价的地球化学块体方法技术 [J]. 地学前缘, 2003, 10(1): 15.]
[53]Liu Dawen, Xie Xuejin. Evaluation of China′s tin resources potential based on the geochemical block concept [J].Chinese Geology,2005, 32(1): 25-32. [刘大文, 谢学锦.基于地球化学块体概念的中国锡资源潜力评价 [J]. 中国地质, 2005, 32(1): 25-32.]
[54]Mathur R, Titley S, Barra F,et al. Exploration potential of Cu isotope fractionation in porphyry copper deposits [J].Journal of Geochemical Exploration,2009, 102(1): 1-6.
[55]Zhu X K, O′Nions R K, Guo Y,et al. Determination of natural Cu-isotope variation by plasma-source mass spectrometry: Implications for use as geochemical tracers [J].Chemical Geology,2000, 163(1/4): 139149.
[56]Larson P B, Maher K, Ramos F C,et al. Copper isotope ratios in magmatic and hydrothermal ore-forming environments [J].Chemical Geology, 2003, 201(3/4): 337-350.
[57]Mathur R, Ruiz J, Titley S,et al. Cu isotopic fractionation in the supergene environment with and without bacteria [J].Geochimica et Cosmochimica Acta,2005, 69(22): 5 233-5 246.
[58]Markl G, Lahaye Y, Schwinn G. Copper isotopes as monitors of redox processes in hydrothermal mineralization [J].Geochimica et Cosmochimica Acta,2006, 70(16): 4 215-4 228.
[59]Maher K C, Larson P B. Variation in copper isotope ratios and controls on fractionation in Hypogene Skarn mineralization at Coroccohuayco and Tintaya, Peru [J].Economic Geology,2007, 102(2): 225-237.
[60]Wang Yue, Zhu Xiangkun. Applications of Cu isotopes on studies of mineral deposits: A status report [J].Journal of Jilin University(Earth Science Edition),2010, 40(4): 739-750. [王跃, 朱祥坤. 铜同位素在矿床学中的应用: 认识与进展 [J]. 吉林大学学报:地球科学版, 2010, 40(4): 739-750.]
[61]Wang Yue, Zhu Xiangkun. Application of Zn isotopes to study of mineral deposits:A review [J].Mineral Deposits, 2010, 29(5): 843-852. [王跃, 朱祥坤.锌同位素在矿床学中的应用: 认识与进展 [J]. 矿床地质, 2010, 29(5): 843-852.]
[62]Taufen P M. Ground waters and surface waters in exploration geochemical surveys [C]Gubins A G ed. Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration. Toronto: Prospectors and Developers Association, 1997: 271-284.
[63]Clarke W B, Kugler G. Dissolved helium in groundwater: A possible method for uranium and thorium prospecting [J].Economic Geology,1973, 68(2):243-251.
[64]Earle S Am, Drever G L. Hydrogeochemical exploration for uranium within the Athabasca Basin, northern Saskatchewan [J].Journal of Geochemical Exploration,1984,19: 57-73.
[65]Dean J R, Bland C J,  Levinson A A. The measurement of 226Ra/223Ra activity ratios in ground water as a uranium exploration technique [J].Journal of Geochemical Explorention, 1982, 19: 187-193.
[66]Miller W R, Wanty R B,  McHugh J B. Application of mineral-solution equilibria to geochemical exploration for sandstone-hosted uranium deposits in two basins in west central Utah [J].Economic Geology, 1984, 79(2): 266.
[67]Pauwels H, Baubron J C, Freyssinet P,et al. Sorption of metallic compounds on activated carbon: Application to exploration for concealed deposits in southern Spain [J].Journal of Geochemical Exploration,1999, 66(1/2): 115133.
[68]Pauwels H, TercierWaeber M L, Arenas M,et al. Chemical characteristics of groundwater around two massive sulphide deposits in an area of previous mining contamination, Iberian Pyrite Belt, Spain [J].Journal of Geochemical Exploration,2002, 75(1/3): 17-41.
[69]Caritat P, Lavitt N,  Kirste D. Groundwater geochemistry in the Broken Hill region, Australia [C]Cidu R ed. Proceedings of the Tenth International Symposium on Water Rock Interaction WRI10 Vol. 1. Netherlands: A.A. Balkema Publishers, 2001: 489-492.
[70]Sader J A, Leybourne M I, McClenaghan M B,et al. Low-temperature serpentinization processes and kimberlite groundwater signatures in the Kirkland Lake and Lake Timiskiming kimberlite fields, Ontario, Canada: Implications for diamond exploration [J].Geochemistry: Exploration, Environment, Analysis,2007, 7(1): 3-21.
[71]Caron M E, Grasby S E,  Cathryn Ryan M. Spring water trace element geochemistry: A tool for resource assessment and reconnaissance mineral exploration [J].Applied Geochemistry, 2008, 23(12): 3 561-3 578.
[72]Goodfellow W D. Mineral Deposits of Canada [M].Canada: Geological Association of Canada Mineral Deposits Division,2007, 5: 1 068.
[73]Cameron E M, Leybourne M I, Kelley D L. Exploring for deeply covered mineral deposits: Formation of geochemical anomalies in northern Chile by earthquake-induced surface flooding of mineralized groundwaters [J].Geology,2002, 30(11): 1 007-1 010.
[74]Cameron E M, Leybourne M I. Relationship between groundwater chemistry and soil geochemical anomalies at the Spence copper porphyry deposit, Chile [J].Geochemistry: Exploration, Environment, Analysis, 2005, 5(2): 135-145.
[75]Leybourne M I, Cameron E M. Source, transport, and fate of rhenium, selenium, molybdenum, arsenic, and copper in groundwater associated with porphyry-Cu deposits, Atacama Desert, Chile [J].Chemical Geology,2008,247(1/2):208-228.
[76]Leybourne M I, Cameron E M. Composition of groundwaters associated with porphyry-Cu deposits, Atacama Desert, Chile: Elemental and isotopic constraints on water sources and water-rock reactions [J].Geochimica et Cosmochimica Acta,2006, 70(7): 1 616-1 635.
[77]Leybourne M I, Goodfellow W D,   Boyle D R. Hydrogeochemical, isotopic, and rare Earth element evidence for contrasting water-rock interactions at two undisturbed Zn-Pb massive sulphide deposits, Bathurst Mining Camp, NB, Canada [J].Journal of Geochemical Exploration,1998, 64(1/3): 237-261.
[78]Leybourne M I, Cousens B L, Goodfellow W D. Lead isotopes in ground and surface waters: Fingerprinting heavy metal sources in mineral exploration [J].Geochemistry: Exploration, Environment, Analysis,2009, 9(2): 115-123.
[79]Leybourne M I, Clark I D, Goodfellow W D. Stable isotope geochemistry of ground and surface waters associated with undisturbed massive sulfide deposits; constraints on origin of waters and waterrock reactions [J].Chemical Geology,2006, 231(4): 300-325.
[80]de Caritat P, McPhail D C, Kyser K,et al. Using groundwater chemical and isotopic composition in the search for base metal deposits: Hydrogeochemical investigations in the Hinta and Kayar Pb-Zn districts, India [J].Geochemistry: Exploration, Environment, Analysis,2009, 9(3): 215-226.
[81]Hattori K H, Cameron E M. Using the high mobility of palladium in surface media in exploration for platinum group element deposits: Evidence from the Lac des Iles region, northwestern Ontario [J].Economic Geology, 2004, 99(1): 157.
[82]Carey M L, McPhail D C,  Taufen P M. Groundwater flow in playa lake environments: Impact on gold and pathfinder element distributions in groundwaters surrounding mesothermal gold deposits, St. Ives area, Eastern Goldfields, Western Australia [J].Geochemistry: Exploration, Environment, Analysis,2003, 3(1): 57.
[83]Dickson B L, Giblin A M. Effective exploration for uranium in South Australian palaeochannels [J].Applied Earth Science: IMM Transactions Section B, 2007, 116(2): 50-54.
[84]de Caritat P, Kirste D, Carr G,et al. Groundwater in the Broken Hill region, Australia: Recognising interaction with bedrock and mineralisation using S, Sr and Pb isotopes [J].Applied Geochemistry, 2005, 20(4): 767-787.
[85]Song Cian, Lei Liangqi. Research and orientation of exploration vegetation geochemistry in China [J].Journal of Guilin University of Technology,2009, 29(1): 1-11. [宋慈安, 雷良奇. 我国勘查植物地球化学的研究现状及发展方向[J]. 桂林工学院学报, 2009, 29(1): 1-11.]
[86]Cole M M. The use of vegetation in mineral exploration in Australia [C]Woodcock J T ed. 8th Commonwealth Mining and Metallurgical Congress: Australia and New Zealand, 1967, 6: 1 429-1 458.
[87]Cole M M. The importance of environment in biogeographical/geobotanical and biogeochemical investigations [J].Journal of the Southern African Institute of Mining and Metallurgy,1971, 11: 414-425.
[88]Lintern M J, Butt C R M,  Scott K M. Gold in vegetation and soil—Three case studies from the goldfields of southern Western Australia [J].Journal of Geochemical Exploration,1997, 58(1): 1-14.[89]Arne D C, Stott J E, Waldron H M. Biogeochemistry of the Ballarat east goldfield, Victoria, Australia [J].Journal of Geochemical Exploration,1999, 67(1/3): 1-14.
[90]Dann R. Hydrogeochemistry and Biogeochemistry in the Stephens Creek CatChment, Broken Hill, NSW [D].Canberra: University of Canberra,2001.
[91]Hill S M, Hill L J. Some important plant characteristics and assay overviews for biogeochemical surveys in western New South Wales [C]Roach I C ed. Advances in Regolith: Proceedings of the CRC LEME Regional Regolith Symposia,2003:187-192.
[92]Hulme K A, Hill S M. River red gums as a biogeochemical sampling medium in mineral exploration and environmental chemistry programs in the Curnamona Craton and adjacent regions of NSW and SA [C]Roach I C ed. Advances in Regolith: Proceedings of the CRC LEME Regional Regolith Symposia, 2003: 205-210.
[93]Hu Xishun, Meng Guanglu. Method of plant geochemical measurement and its prospecting result [J].Mineral Resources and Geology,2005, 19(6): 610-616. [胡西顺, 孟广路. 植物地球化学测量方法的试验效果[J]. 矿产与地质, 2005, 19(6): 610-616.]
[94]Reid N,Hill S M, Lewis D M. Biogeochemical expression of buried gold mineralization in semi-arid northern Australia: Penetration of transported cover at the Titania Gold Prospect, Tanami Desert, Australia [J].Geochemistry: Exploration, Environment, Analysis,2009, 9(3): 267-288.
[95]Anand R R, Cornelius M, Phang C. Use of vegetation and soil in mineral exploration in areas of transported overburden, Yilgarn Craton, Western Australia: A contribution towards understanding metal transportation processes [J].Geochemistry: Exploration, Environment, Analysis,2007, 7(3): 267-288.
[96]Kozuskanich J C, Kyser T K, MacFarlane W R,et al. Dendrochemical variation over the Cross Lake VMS mineralization—A  tool for mineral exploration and decoupling anthropogenic input from background signals [J].Geochemistry: Exploration, Environment, Analysis,2009, 9(2): 151-157.

[1] 汪明启. 从第一届国际应用地球化学会议看国际应用地球化学现状和发展趋势[J]. 地球科学进展, 2006, 21(1): 83-84.
[2] 汪明启. 国际勘查地球化学现状和发展趋势——第21届勘查地球化学国际会议介绍[J]. 地球科学进展, 2005, 20(4): 477-478.
[3] 徐兴旺,蔡新平. 隐伏矿床预测理论与方法的研究进展[J]. 地球科学进展, 2000, 15(1): 76-83.
阅读次数
全文


摘要