Please wait a minute...
img img
高级检索
地球科学进展  2000, Vol. 15 Issue (5): 576-582    DOI: 10.11867/j.issn.1001-8166.2000.05.0576
综述与评述     
137Cs示踪技术在土壤侵蚀估算中的应用研究进展
唐翔宇,杨 浩,赵其国,李仁英,朱振华,濮励杰
①中国科学院南京土壤研究所,江苏 南京 210008;②南京大学城市与资源学系,江苏 南京 210093
REVIEW OF PROGRESSES IN APPLICATION OF137Cs TRACER TECHNIQUE TO THE ESTIMATE OF SOIL EROSION
①Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China;②Department of Municipal and Resources Sciences,Nanjing University,Nanjing 210093,China
 全文: PDF(422 KB)  
摘要:

137Cs示踪技术目前已被广泛用于长期的土壤侵蚀(水蚀)估算。该技术要解决的两个关键问题是土壤137Cs基准值的确定,以及土壤的137Cs损失量与土壤侵蚀量之间的定量模型的建立。对现有的主要的定量模型进行了简述,并提出了各自的局限性。这些模型可分为经验模型和理论模型两大类,其中以理论模型中的质量平衡模型较为成熟,综合考虑了较多的侵蚀因子,如137Cs年沉降分量、土壤颗粒粒径分布差异、地表富集作用、耕作土壤在耕作活动前新沉降137Cs的侵蚀损失等。对现有模型的改进也进行了探讨,并提出了今后的一些研究重点。

关键词: 土壤侵蚀速率137Cs定量模型质量平衡模型    
Abstract:

The 137Cs  tracer technique has been widely used in the estimate of water-induced soil erosion rate representing a long term. There are two key problems calling for scientific solutions to practical utilization of this technique. One is the determination of reference value of 137Cs content of soil having experienced neither erosion nor deposition, and the other is the establishment of the quantitative model between the amount of 137Cs lost from the soil profile and the rate of soil loss. The primary existing quantitative model was reviewed in this paper, and their limitations were also revealed. These models fell into two categories, namely, empirical model and theoretical model, among which the mass-balance models are relatively reliable because they involved considerations of many factors related to the soil erosion process, such as annual fractions of 137Cs fallout input, the grain size selectivity associated with soil erosion and sediment transport processes, surface enrichment,137Cs  loss due to soil erosion prior to the tillage operation, and etc. The needs of some further improvements of existing models and some additional intensive works were also suggested in this paper.

Key words: Rate of soil erosion    137Cs    Quantitative model    Mass-balance model.
收稿日期: 2000-01-03 出版日期: 2000-10-01
:  S157.1  
基金资助:

国家自然科学基金项目“我国红壤地区土壤中137Cs分布特征及侵蚀示踪研究”(编号:49973027);科技部973项目“红壤侵蚀示踪与侵蚀动态监测与预测研究”(编号:G1999011801);中国科学院院长特别资助基金“中国南方红壤地区土壤侵蚀作用的137Cs示踪研究”;中国科学院红壤生态实验站基金“利用Cs-137示踪红壤侵蚀和沉积速率的定量研究”联合资助。

通讯作者: 唐翔宇(1972-),男,浙江省江山县人,博士研究生,主要从事土壤侵蚀的示踪研究。    
作者简介: 唐翔宇(1972-),男,浙江省江山县人,博士研究生,主要从事土壤侵蚀的示踪研究。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

唐翔宇,杨 浩,赵其国,李仁英,朱振华,濮励杰. 137Cs示踪技术在土壤侵蚀估算中的应用研究进展[J]. 地球科学进展, 2000, 15(5): 576-582.

TANG Xiang-yu,YANG Hao,ZHAO Qi-guo,LI Ren-ying,ZHU Zhen-hua,PU Li-jie. REVIEW OF PROGRESSES IN APPLICATION OF137Cs TRACER TECHNIQUE TO THE ESTIMATE OF SOIL EROSION. Advances in Earth Science, 2000, 15(5): 576-582.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2000.05.0576        http://www.adearth.ac.cn/CN/Y2000/V15/I5/576

[1] Buringh P. An Assessment of Losses and Degradation of Productive Agricultural Land in the World: Report of Working Group on Soil Policy of Food and Agriculture Organization[R]. Rome: FAO, UN, 1981.
[2] Brown L R. Conserving soils[A]. In: Brown L R. State of the World[C]. New York: Norton, 1984. 53~75.
[3] Walling D E, Quine T A. Use of 137Cs measurements to investigate soil erosion on arable fields in the UK: potential applications and limitations[J]. J Soil Science, 1991, 42(1): 147~165.
[4] Loughran R J. The measurements of soil erosion[J]. Progress in Physical Geography, 1989, 13: 216~233.
[5] Morgan R P C. Assessment of Soil erosion risk in England and Wales[J]. Soil Use and Management, 1985, 1: 127~131.
[6] Ritchie J C, McHenry J R. Application of radioactive fallout Caesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review[J]. J Environ Qual, 1990,19(2): 215~233.
[7] Rogowski A S, Tamura T. Movement of Caesium-137 by run off, erosion and infiltration on the alluvial Captina silt loam[J]. Health Physics, 1965, 11: 1 333~1 340.
[8] Ritchie J C, Spraberry J A, McHenry J R. Estimating soil erosion from the redistribution of 137Cs[J]. Soil Sci Soc Am Proc, 1974, 38(1): 137~139.
[9] Walling D E, Quine T A. Calibration of Caesium-137 measurements to provide quantitative erosion rate data[J]. Land Degrad Rehab, 1990, 2: 161~172.
[10] Wilkin D C, Hebel S J. Erosion, redeposition, and delivery of sediment to Midwestern streams[J]. Water Resour Res,1982, 18: 1278~1282.
[11] Campbell B L, Loughran R J, Elliot G L,et al. Mapping drainage basin sources using Caesium-137[A]. In: Hadley R F. Drainage Basin Sediment Delivery(International Association of Hydrological Sciences Publication No 174 [C] .Wallingford, UK: IAHS, 1986. 437~446.
[12] Loughran R J, Elliott G L, Campbell B L,et al. Estimation of soil erosion from Caesium-137 measurements in a small cultivated catchment in Australia[J]. Appl Radiat Isotopes,1988, 39(11): 1153~1157.
[13] Loughran R J, Campbell B L. The identification of catchment sediment sources[A]. In: Foster I Let al. Sediment and Water Quality in River Catchments[C]. Chichester,UK: John Wiley &Sons, 1995. 189~205.
[14] Mitchell J K, Bubenzer G D, McHenry J R,et al. Soil loss estimation from fallout Caesium-137 measurements[A]. In:DeBoodt M, Gabriels D, Assessment of Erosion[C]. Chechester, UK: John Wiley &Sons, 1980. 393~401.
[15] De Jong E, Begg C M, Kachanoski R G. Estimates of soil erosion and deposition from Saskatchewan soils[J]. Can J Soil Sci 1983, 63(3): 607~617.
[16] Fredericks D J, Perrens S J. Estimating erosion using caesium-137:Ⅱ. Estimating rates of soil loss[J]. IAHS Publ,1988, 174: 225~231.
[17] Martz L W, de Jong E. Using Caesium-137 to assess the variability of net soil erosion and its association with topography in a Canadian Prairie landscape[J]. Catena, 1987, 14:439~451.
[18] Vanden Berghe I, Gulinck H. Fallout 137Cs as tracers for soil mobility in the landscape framework of the Belgian loamy region[J]. Pedologie, 1987, 37: 5~20.
[19] Brown R B, Kling G F, Cutshall N H. Agricultural erosion indicated by 137Cs redistributionⅡ:Estimating rates of erosion rates[J]. Soil Sci Soc Am J, 1981, 45(6): 1 191~1197.
[20] Lowrance R, McIntyre S, Lance C. Erosion and deposition in a friend/forest system estimated using Caesium-137 activity[J]. J Soil Water Conserv, 1988, 43(2): 195~199.
[21] Kachanoski R G. Estimating soil loss from changes in soil ce-sium-137[J]. Can J Soil Sci, 1993, 73(4): 629~632.
[22] Kachanoski R G, de Jong E. Predicting the temporal relationship between soil Caesium-137 and erosion rate[J]. J Environ Qual, 1984, 13(2): 301~304.
[23] Quine T A. Use of a simple model to estimate rates of soil erosion from Caesium-137 data[J]. J Water Resourc, 1989,8: 51~84.
[24] Quine, T A. Estimation of erosion rates from the caesium-137 data: The calibration question[A]. In: Foster I L,et al.Sediment and Water Quality in River Catchments [C].Chichester,UK: John Wiley &Sons, 1995. 307~330.
[25] Walling D E, Quine T A. Use of Caesium-137 As a Tracer of Erosion and Sedimentation: Handbook for the Application ofthe Caesium-137 Technique [M]. Exeter,UK: Univ of Exeter, 1993.
[26] He Q, Walling D E. The distribution of fallout 137Cs and 210Pb in undisturbed and cultivated soils[J]. Appl Radiat Isotopes, 1997, 48: 677~690.
[27] Walling D E, He Q. Improvement models for estimating soil erosion rates from Caesium-137 measurements[J]. J Environ Qual, 1999, 28(2): 611~622.
[28] 杨浩,杜明远,赵其国,等.基于137Cs地表富集作用的土壤侵蚀速率的定量模型[J].土壤侵蚀和水土保持学报,1999,5(3):42~48.
[29] Elliott G L, Campbell B L, Loughran R J. Correlation of erosion measurements and soil Caesium-137 content[J]. Appl Radiat Isotopes, 1990, 41(8): 713~717.
[30] Zhang X, Higgitt D L, Walling D E. A preliminary assessment of the potential for using Caesium-137 to estimate rates of soil erosion in the Loess Plateau of China[J]. Hydrol Sci J, 1990, 35: 267~276.
[31] Walling D E, He Q. Models for Converting 137Cs Measurements to Estimates of soil Redistribution Rates on Cultivated and Undisturbed Soils (including Software for Model Implementation): Report to IAEA [R]. Exeter, UK: IAEA,1997.
[32] Walling D E, He Q. Use of fallout 137Cs measurements for validating and calibrating soil erosion and sediment delivery models[J]. IAHS Publ, 1998, 249: 267~278.
[33] Owens P N, Walling D E. The use of a numerical mass-balance model to estimate rates of soil redistribution on unculti-vated land from 137Cs measurements[J]. J Environ Radioact,1998, 40(2): 185~203.
[34] Yang H, Chang Q, Du M,et al. Quantitative model of soil erosion rate using 137Cs for uncultivated soil[J]. Soil Sci,1998, 163(3): 248~257.
[35] Yang H, Du M, Chang Q,et al. Quantitative model for estimating soil erosion rate using 137Cs [J]. Pedosphere, 1998, 8(3): 211~220.
[36] Wallbrink P J, Murray A S. Determinating soil loss using the inventory ratio of excess lead-210 to Caesium-137[J].Soi Sci Soc Am J, 1996, 60(4): 1 201~1 208.

[1] 陶欣,范闻捷,王大成,闫彬彦,徐希孺. 植被FAPAR的遥感模型与反演研究[J]. 地球科学进展, 2009, 24(7): 741-747.
[2] 张燕;潘少明;彭补拙. 137Cs计年法确定湖泊沉积物沉积速率研究进展[J]. 地球科学进展, 2005, 20(6): 671-678.
[3] 唐翔宇,杨浩,李仁英,赵其国. 7Be在土壤侵蚀示踪中的应用研究进展[J]. 地球科学进展, 2001, 16(4): 520-525.
[4] 唐小明,李长安. 土壤侵蚀速率研究方法综述[J]. 地球科学进展, 1999, 14(3): 274-278.
[5] 万国江. 137Cs及210Pbex方法湖泊沉积计年研究新进展[J]. 地球科学进展, 1995, 10(2): 188-192.
[6] 赵振华. 微量元素地球化学[J]. 地球科学进展, 1992, 7(5): 65-.