地球科学进展 ›› 1998, Vol. 13 ›› Issue (6): 518 -525. doi: 10.11867/j.issn.1001-8166.1998.06.0518

干旱气候变化与可持续发展 上一篇    下一篇

实验埋葬学及其研究进展
张兴亮,舒德干   
  1. 西北大学地质系 西安 710069
  • 收稿日期:1997-10-30 修回日期:1998-02-16 出版日期:1998-12-01
  • 通讯作者: 张兴亮
  • 基金资助:

    国家自然科学基金项目"一些软体动物的起源研究"(编号:49672086)和国家科委攀登计划项目"地球早期生命演化及寒武纪大爆发"资助。

EXPERIMENTAL TAPHONOMY AND ITS DEVELOPMENT

Zhang Xingliang,Shu Degan   

  1. Department of Geology, Northwest University, Xi'an 710069
  • Received:1997-10-30 Revised:1998-02-16 Online:1998-12-01 Published:1998-12-01

实验埋葬学是涉及地质学、生物学、化学、物理学等学科的一门交叉渗透性研究科学。它是在实验条件下研究生物或生物残体由生物圈转变到岩石圈的一系列变化过程及其与环境因素之间的相互作用关系。通过对环境因素的控制,研究各生物类别和组织类型的保存潜力及可能的保存状态,以及各环境因素在化石形成过程中的作用和结果。近年来的实验研究已为解决软躯体化石库的成因、早期核生物的鉴定、牙形动物和伊迪卡拉生物群的属性等一系列古生物学上的难题提供了新的思路。

Experimental taphonomy is a multidisciplinary research on the processes of fossilization, which is involved in geology, biology, chemistry and physics. It studies the transition of organism remains from the biosphere to the lithosphere, and interactions between organism remains and environmental factors in laboratory. By controlling the environmental factors, the relative preservation potential of different taxa and different tissue types as well as the possible depositional orientations can be assessed, which are critical to the interpretation of fossil materials. At the same time, the study of actions and results of environmental factors in the processes of fossilization provides a new method for the palaeoenvironmental analysis. A series of taphonomic experiments recently made throw a new light on some great puzzles in palaeontology, such as the origination of soft-tissue preservation, the identification of early eukaryotes, the affinities of conodont animal and the nature of Ediacaran biota etc. Therefore, Experimental taphonomy is a new approach of science for palaeontology and palaeoenvironmental analysis.

中图分类号: 

[1] Weigelt J. Recent Vertebrate Carcasses and Their Paleobiological Implications. Schaefer J 译. Chicago: University of Chicago Press, 1989.
[2] Cadee G C. The history of taphonomy. In: Donovan S K ed. The Processes of Fossilization. New York: Columbia University Press,1991.
[3] Efremov I A. Taphonomy: new branch of palaeontology. Pan-American Geologists, 1940, 74(2):81-83.
[4] Wilson M V H. Taphonomic processes: information loss and information gain. Geoscience Canada, 1988, 15(2): 131-148.
[5] Allison P A. Konservat-Lagerstatten: cause and classification. Paleobiology, 1988, 14(4): 331-344.
[6] Briggs D E G. Experimental taphonomy. Palaios, 1995, 10: 539-550.
[7] Allison P A. The role of anoxia in the decay and mineralization of proteinaceous macrofossils. Paleobiology, 1988, 14: 139-154.
[8] Briggs D E G, Kear A J. Decay and preservation of polychaetes: Taphonomic thesholds in soft-bodied organisms. Paleobiology, 1993,19:107-135.
[9] Briggs D E G, Kear A J. Decay and mineralization of shrimps. Palaios, 1994, 9:431-456.
[10] Plotnick R E. Taphonomy of a modern shrimp: implications for the arthropod fossil record. Palaios, 1986, 1:286-293.
[11] Briggs D E G, Kear A J. Decay and mineralization of shrimp. Palaios, 1994, 9: 431-456.
[12] Allison P A. Soft-bodied animals in the fossil record: The role of decay in fragmentation during transport. Geology, 1986,14:979-981.
[13] Kidwell S M, Baumiller T. Experimental disintegration of regular echinoids: Roles of temperature, oxygen and decay thresholds. Paleobiology, 1990, 16: 247-271.
[14] Glover C P, Kidwell S M. Influence of organic matrix on the pos-tmortem destruction of mulluscan shells. Journal of Geology, 1993,101: 729-747.
[15] Maitill D M, Harper E. Critical point drying, a technique for palaeontologists. Palaeontology, 1990, 33: 423-428.
[16] Hesselbo S P. The biostratinomy of Dikelocephalus sclerites: implications for use of trilobite attitude data. Palaios, 1987, 2: 605-608.
[17] Lask P B. The hydrodynamic behavior of sclerites from the trilobite Flexicalymene meeki. Palaios, 1993, 8: 219-225.
[18] Franzen J L. Grube Messel. In: Briggs D E G et al, eds. Paleobiology-a synthesis. New York: Plenum, 1990.
[19] 张兴亮, 舒德干. 澄江化石库中双节虫类的保存状态及其埋葬后的腐烂过程. 西北大学学报, 1996, 26(增刊): 454-458.
[20] Whitt inton H B. Burgess Shale. N ew Haven: Yale Universit y Press, 1985.
[21] Briggs D E G, Wilby P R. The role of the calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils. Journal of the Geological society, 1996, 153: 665-668.
[22] Schopf J W. Microflora of the Bitter Springs Formation, Late Precambrian, central Australia. Journal of Paleontology, 1968, 42(3): 451-668.
[23] Oehler D Z. Pyrenaid-like structures in Late Precambrian algae from the Bitler Springs Formation of Austrailia.Journal of Paleontology,1977,51:885-901.
[24] Knol l A. Biological and biogeochemical Precambrian eukaryotes. In: Tevesz M J S, McCal l P L, eds. Biotic Interactions in Recent and Fossil Benthic Communities. New York: Plenum, 1983.
[25] Zhu Shixing, Chen Huineng. Megascopic multicellular organisms from the 1  700-million-yea-rold Tuanshanzi formation in the Jixian area, North China. Science, 1995, 270: 620-622.
[26] Vidal G. Early ecosystems: Limitations imposed by the fossil record. In: Bengtson S ed. Early Life on Earth, Nobel symposium 84. New York: Columbia University Press, 1994.
[27] Briggs D E G, Clarkson E N J, Aldridge R J, et al. The conodont animal. Lethaia, 1983, 16: 1-14.
[28] Aldridge R J, Briggs D E G, Clarkson E N K, et al. The affinities of conodonts-New evidence from the Carboniferous of Edinburgh, Scotland. Lethaia, 1986, 19: 279-291.
[29] Briggs D E G, Kear A J. Decay of the lancelet Branchiostoma lanceolatum (Cephalochordata): implication for the interpretation of soft-tissue preservation in conodonts and other primitive chordates. Lethaia, 1994, 26:275-287.
[30] Norris R D. Cnidarian taphonomy and affinities of the Ediacaran biota. Lethaia, 1989, 24: 235-247.
[31] Bruton D L. Beach and laboratory experiments with the jellyfish Aurelia, and remarks on some fossil medusoid traces. In: Simonetta A M, Conway Morris S, eds. The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge: Cambridge University Press, 1991.121-125.

[1] 刘羽. 未来10年(2000—2010)美国古生物学研究方向——地球—生命耦合系统的动力学历史[J]. 地球科学进展, 2005, 20(11): 1256-1261.
[2] 张弥曼,陈旭. 20世纪古生物学的重大进展及21世纪战略重点[J]. 地球科学进展, 2001, 16(5): 624-628.
[3] 汪品先. 古海洋学[J]. 地球科学进展, 1994, 9(4): 94-96.
[4] 方宗杰;戎嘉余. 化石生物学[J]. 地球科学进展, 1993, 8(6): 81-82.
[5] 戎嘉余; 方宗杰. 理论古生物学[J]. 地球科学进展, 1993, 8(4): 74-76.
[6] 杨群. 微体古生态学[J]. 地球科学进展, 1993, 8(3): 84-85.
阅读次数
全文


摘要