地球科学进展 ›› 2017, Vol. 32 ›› Issue (4): 435 -445. doi: 10.11867/j. issn. 1001-8166.2017.04.0435

上一篇    下一篇

使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化
陈晓龙 1( ), 周天军 1, 2   
  1. 1. 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029
    2. 中国科学院大学,北京 100049
  • 收稿日期:2016-11-07 修回日期:2017-02-28 出版日期:2017-04-20
  • 基金资助:
    公益性行业(气象)科研专项项目“基于FGOALS-s、CMA和CESM气候系统模式的年代际集合预测系统的建立与研究”(编号:GYHY201506012);“气候变化”江苏高校协同创新中心资助

Surface Air Temperature Projection Under 1.5 ℃ Warming Threshold Based on Corrected Pattern Scaling Technique

Xiaolong Chen 1( ), Tianjun Zhou 1, 2   

  1. 1.LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China
    2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-11-07 Revised:2017-02-28 Online:2017-04-20 Published:2017-04-20
  • About author:

    First author: Chen Xiaolong (1988-), male, Pucheng County, Shaanxi Province, Post doctor. Research areas include monsoon variability and climate change.E-mail:chenxl@lasg.iap.ac.cn

  • Supported by:
    Project supported by the R&D Special Fund for Public Welfare Industry (Meteorology) “Development and research of ensemble decadal climate prediction system based on global climate models FGOALS-s, CMA and CESM” (No.GYHY201506012);The Jiangsu Collaborative Innovation Center for Climate Change

近10年(2007—2016年)全球地表气温相对于工业革命前(1861—1890年)已上升约1 ℃,未来达到1.5 ℃温升阈值时的气候变化及其影响成为国际社会高度关注的问题。目前对未来温度的预估多依赖气候模式,但模式在区域气候预估方面尚存在较大不确定性。采用国际通用的“空间型标度(Pattern scaling)”方法,尝试基于1951—2005年历史温度观测资料,预估1.5 ℃温升阈值下全球区域地表气温相对于当前升温1 ℃的变化。由于未来气温变化的空间型可能与历史时期不完全相同,同时非线性因素亦可能令基于线性假设的空间型标度法出现偏差,故利用参加第五次耦合模式比较计划(CMIP5)的21个气候模式在4种典型浓度路径情景(RCP8.5,RCP6.0, RCP4.5, RCP2.6)下增暖空间型相对于历史时期(1951—2005年)的变化,对观测的空间型进行订正,并考虑非线性因素的影响。结果表明,全球平均温度继续上升0.5 ℃,达到1.5 ℃时,4种情景下预估的地表气温变化的空间型和增暖幅度接近。大部分陆地将升温0.6 ℃以上,北半球比南半球高约0.2 ℃,陆地比海洋高约0.3 ℃。预估中国区域升温0.7 ℃以上。RCP2.6下中国北部和中部升温明显高于其他情景。若不考虑订正方法的影响,在全球和区域尺度上,基于观测资料的空间型标度法预估结果的不确定性均远小于气候模式。

The global mean temperature during the recent decade (2007-2016) has increased above 1 ℃ relative to the pre-industrial period (1861-1890). The climate change and impact under 1.5 ℃ warming in the future have become a great concern in global society. Temperature projections, especially in regional scale, show great uncertainty depending on used climate models. Taking advantage of pattern scaling technique and observed temperature changes during 1951-2005, we tried to project the temperature changes globally under 1.5 ℃ threshold relative to current climate state, i.e. about 1 ℃ warming around 2007-2016. The projections of 21 climate models from the Coupled Model Intercomparison Project - Phase 5 under four Representative Concentration Pathways (RCP2.6, RC4.5, RCP6.0 and RCP8.5) were used to correct the assumptions in pattern scaling. Results showed that the geographical distribution and warming amplitude of surface air temperature changes under 1.5 ℃ threshold are similar in the four scenarios. Warming over most of the land would be above 0.6 ℃, 0.3 ℃ warmer than ocean. The Northern Hemisphere would be 0.2 ℃ warmer than the Southern Hemisphere. The temperature over China region will increase by 0.7 ℃. The warming in the Northern and Central China under RCP2.6 was obviously higher than that in the other scenarios. Ignoring the impact of correction method, uncertainty in temperature projection based on pattern scaling was much smaller than that in climate models, both in global and regional scales.

中图分类号: 

表1 21个CMIP5模式的基本信息
Table 1 Basic information of 21 CMIP5 models
图1 4种预估情景下订正前后CMIP5模式中未来和历史时期地表气温标度型差异的集合平均以及模式的不确定性
(a),(c),(e),(g)为4种情景下预估时段(2006—2099年)和历史模拟时段(1951—2005年)的空间标度型之差(即公式(2)中的 P m2- P m1);填色为多模式集合平均,等值线为模式间的标准差;(b),(d),(f),(h)与(a),(c),(e),(g)类似,为利用公式(2)得到的订正系数 AB根据公式(3)对模式历史时段的标度型进行订正后的结果,单位为℃/℃
Fig.1 CMIP5 model ensemble mean and uncertainty of differences between future and historical scaling pattern of surface air temperature under the four scenarios
(a),(c),(e),(g)Uncorrected differences in scaling pattern between projection (2006-2099) and historical (1951-2005) periods(that is P m2- P m1 in Equation (2));Shadings are multi-model ensemble mean and contours the intermodal standard deviation;(b),(d),(f),(h) is the same as (a),(c),(e),(g),but for the corrected results based on Equation (3),units:℃/℃
图2 4种预估情景下订正后HadCRUT4资料的标度型及与未订正的差别
(a),(c),(e),(g)根据4种情景下得到的订正系数(公式(2)中 AB),利用公式(3)对HadCRUT4观测资料1951—2005 年的空间标度型进行订正的结果;(b),(d),(f),(h) 为订正后与未订正之差,单位为℃/℃
Fig.2 Corrected scaling pattern in HadCRUT4 data and differences from the uncorrected under the four scenarios
(a),(c),(e),(g) Corrected scaling pattern in HadCRUT4 data during 1951-2005 using Equation (3) based on the derived parameters A and B in Equation (2) under the four scenarios; (b),(d),(f),(h) Differences between the corrected and uncorrected results, units: ℃/℃
表2 基于订正后HadCRUT4的观测标度型预估的1.5 ℃阈值下全球及区域地表气温相对于当前气候(2007—2016年,相对工业革命前升温1 ℃左右)时的变化(单位:℃)
Table 2 Projected surface air temperature changes at global and reginal scales at 1.5 ℃ threshold relative to the current 1 ℃ warming (2007-2016, relative to the pre-industrial period) based on corrected scaling pattern in HadCRUT4
图3 4种预估情景下,根据公式(4)计算的多模式集合平均的Δ Tn
反映的是非线性因素对空间型标度法结果的影响,单位为℃
Fig.3 Multi-model ensemble mean of Δ Tn based on Equation (4) under the four scenarios
Representing the effects of nonlinear factors on the projected results based on pattern scaling method, units: ℃
图4 空间型标度法预估的地表气温变化及其与多模式集合平均结果的差异
(a),(c),(e),(g)基于订正的观测标度型预估的4种情景下1.5 ℃阈值相对于当前气候(2007—2016年,相对工业革命前升高1 ℃左右) 地表气温的变化,并依公式(5)进行了非线性因素订正;(b),(d),(f),(h)为左列与模式集合平均的预估结果之差,单位为℃
Fig.4 Projected changes in surface air temperature based on pattern scaling method and the differences from multi-model ensemble mean
(a),(c),(e),(g) Projected surface air temperature changes at 1.5 ℃ threshold relative to the current 1 ℃ warming (2007-2016,relative to the pre-industrial period) based on corrected scaling pattern in HadCRUT4 and further correcting the effects of nonlinear factors based on Equation (5);(b),(d),(f),(h) Differences from the projection of multi-model ensemble mean under the four scenarios,units:℃
图5 空间型标度法和CMIP5模式预估4种情景下1.5 ℃阈值相对于当前气候(2007—2016年,相对工业革命前升高1 ℃左右)北半球、南半球、海洋、陆地和东亚陆地地表气温的变化
对应观测和模拟结果,分别给出了HadCRUT4资料中100个成员以及21个CMIP5模式结果的±1标准差范围
Fig.5 Projected surface air temperature changes in the Northern Hemisphere, Southern Hemisphere, oceans, land and East Asian land at 1.5 ℃ threshold relative to the current 1 ℃ warming (2007-2016, relative to the pre-industrial period) based on pattern scaling method and CMIP5 models under the four scenarios
Bars denote the ±1 standard errors in observation and models based on 100 members of HadCRUT4 data and twenty-one CMIP5 models, respectively
图6 空间型标度法预估1.5 ℃阈值相对于当前气候(2007—2016年,相对工业革命前升高1 ℃左右)中国区域地表气温的变化及与模式预估结果的差别
(a)4种情景下升温空间分布的平均结果;(b)空间型标度法与模式预估结果之差;(c)2种方法预估中国及4个子区域的升温及其不确定性; 4个子区域定义为:北部(NC;20°~50°N,75°~135°E)、中部(CC;30°~40°N,105°~120°E)、南部(SC;20°~30°N,100°~120°E)和 青藏高原地区(TP;30°~40°N,75°~105°E);对应观测和模拟结果,分别给出了HadCRUT4资料中100个成员以及21个CMIP5模式结果的±1标准差范围
Fig.6 Projected surface air temperature changes in the China region at 1.5 ℃ threshold relative to the current 1 ℃ warming (2007-2016, relative to the pre-industrial period) based on pattern scaling method and CMIP5 models and their differences
(a)Averaged surface air temperature changes across the four scenarios; (b) Differences between pattern scaling method and CMIP5 model ensemble mean;(c) Comparisons of warming degree and uncertainty in the China region and four sub-regions under the four scenarios between pattern scaling method and model projection. The four sub-regions are defined as below: Northern China (NC; 20°~50°N, 75°~135°E), Central China (CC; 30°~ 40°N,105°~120°E ), Southern China (SC; 20°~30°N, 100°~120°E) and Tibetan Plateau (TP; 30°~40°N, 75°~105°E ). Bars denote the ±1 standard errors in observation and models based on one hundred members of HadCRUT4 data and twenty-one CMIP5 models, respectively
[1] Tollefson J.2015 breaks heat record[J]. Nature, 2016, 529: 450.
[2] Schleussner C F, Lissner T K, Fischer E M, et al.Differential climate impacts for policy-relevant limits to global warming:The case of 1.5 ℃ and 2 ℃[J]. Earth System Dynamics, 2016, 7:327-451.
[3] Koutroulis A G, Grillakis M G, Tsanis I K, et al.Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments[J]. Climate Dynamics, 2016, 47(5): 1 881-1 898.
[4] Chen X L, Zhou T J.Uncertainty in the 2℃ warming threshold related to climate sensitivity and climate feedback[J]. Journal of Meteorological Research, 2015, 29(6): 884-895, doi: 10.1007/s13351-015-5036-4.
[5] Santer B D, Wigley T M L, Schlesinger M E, et al. Developing Climate Scenarios from Equilibrium GCM Results[R]. Report No. 47, Max-Planck-Institut für Meteorologie, Hamburg, Germany,1990.
[6] Herger N, Sanderson B M, Knutti R.Improved pattern scaling approaches for the use in climate impact studies[J]. Geophysical Research Letters, 2015, 42: 3 486-3 494, doi:10.1002/2015GL063569.
[7] Mitchell T D.Pattern scaling—An examination of the accuracy of the technique for describing future climates[J]. Climatic Change, 2003, 60(3): 217-242.
[8] Tebaldi C, Arblaster J M.Pattern scaling: Its strengths and limitations, and an update on the latest model simulations[J]. Climatic Change, 2014, 122(3): 459-471.
[9] Bichet A, Kushner P J, Mudryk L.Estimating the continental response to global warming using pattern-scaled sea surface temperatures and sea ice[J]. Journal of Climate, 2016, 29: 9 125-9 139, doi: 10.1175/JCLI-D-16-0032.1.
[10] Collins M, Knutti R, Arblaster J, et al.Long-term climate change: Projections, commitments and irreversibility[M]∥Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press, 2013.
[11] Morice C P, Kennedy J J, Rayner N A, et al.Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset[J]. Journal of Geophysical Research, 2012, 117, D08101, doi:10.1029/2011JD017187.
[12] Taylor K E, Stouffer R J, Meehl G A.An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012,93(4): 485-498, doi:10.1175/BAMS-D-11-00094.1.
[1] 李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
[2] 王澄海,靳双龙,吴忠元,崔洋. 估算冻结(融化)深度方法的比较及在中国地区的修正和应用[J]. 地球科学进展, 2009, 24(2): 132-140.
阅读次数
全文


摘要