研究论文

利用场地观测计算地表通量

  • H.Ishikawa ,
  • Y.Oku ,
  • 马伟强 ,
  • 李茂善 ,
  • 胡泽勇 ,
  • 马耀明 ,
  • K.Tanaka
展开
  • 1.Disaster Prevention Research Institute, Kyoto University,Kyoto Japan; 2.Kumamoto University,Kumamoto Japan;3.中国科学院青藏高原研究所,北京 100085; 4.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
H. Ishikawa.E-mail: ishikawa@storm.dpri.kyoto-u.ac.jp

收稿日期: 2006-10-23

  修回日期: 2006-10-23

  网络出版日期: 2006-12-15

Surface Flux Estimation Using in Situ Measurement

  • H. Ishikawa ,
  • Y. Oku ,
  • MA Wei-qiang4 ,
  • LI Mao-shan4 ,
  • HU Ze-yong4 ,
  • MA Yao-ming ,
  • K. Tanaka
Expand
  • 1.Disaster Prevention Research Institute, Kyoto University,Kyoto Japan; 2.Kumamoto University,Kumamoto Japan; 3.Institute of Tibetan Plateau, CAS,Beijing 100085,China; 4.Cold and Arid Regions Environmental and Engineering Research Institute, CAS,Lanzhou 730000,China

Received date: 2006-10-23

  Revised date: 2006-10-23

  Online published: 2006-12-15

摘要

    高原地表的感热和潜热通量在亚洲季风系统中有很重要的作用。由于高原地域辽阔,且自然环境较严酷,不利于建立完善的地面观测系统。因此,卫星遥感观测就成为测算高原整体感热和潜热通量的有效工具。地面场地的观测结果作为地表通量的真实值,对于卫星遥感测算是非常重要的。它也为构建陆面—大气模型提供了科学依据,是卫星资料的资料同化系统中的重要组成部分。
    计算场地热量通量有几种不同的处理方法。最简单的方法利用有效的观测和试验的参数,可以给出稳定连续的估计。愈精确的Bowen比或者廓线的观测能给出愈精确的信息。综合了湍流测量及辐射测量、土壤热通量的观测结果的估计对陆面—大气相互作用进行了详细的描述,以适应模式的发展。从1998年开始,这些方法联合应用到青藏高原;场地通量观测方面的成果以及目前对其理解将在本文中做一概述。

 

本文引用格式

H.Ishikawa , Y.Oku , 马伟强 , 李茂善 , 胡泽勇 , 马耀明 , K.Tanaka . 利用场地观测计算地表通量[J]. 地球科学进展, 2006 , 21(12) : 1237 -1243 . DOI: 10.11867/j.issn.1001-8166.2006.12.1237

Abstract

Sensible and latent heat fluxes from the plateau surface are of great importance in the Asian monsoon system. Since the plateau occupies a wide area and the environmental conditions are severe to perform surface observation, the satellite remote sensing is inevitably a practical tool to estimate these fluxes from whole plateau surface. The in situ flux estimation is, however, necessary as a ground truth for the satellite remote sensing. It also gives scientific information in constructing land surface-atmosphere model, which shares an important part of data assimilation system using satellite data. There are several different approaches in estimating in situ heat fluxes. The simplest method uses operational observation and experimental parameters, and it gives steady continuous estimation. The more sophisticated Bowen ratio or profile observation gives the more precise information. The estimation with turbulence measurement together with the measurement of radiation and soil heat fluxes give detailed description of land surfaceatmosphere interaction suitable to model development. Since 1998, a combination of these methods has been applied to the Tibetan plateau. The efforts of these in situ flux observation and the current understandings are summarized in this presentation.

参考文献

[1] Manabe, Terpsta. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments[J]. Journal of Atmospheric Science,1974,31:3-42.

[2] Flohn H. Bemerkungen zur Kimatologic von Hochasian[J]. Abhandlungen der Mathematisch-naturwissenschaftlichen Klasse, 1959,14:1 409-1 431.

[3] Gao G, Liu Y. A study of the radiation balance, heat balance and heat and cold sources on the earth's surface in eastern Asia[J]. Scientia Atmospheric Sinica,1979,3:12-20[in Chinese]

[4] Johnson D R, Yanai M, Schaak T K. Global and regional distributions of atmospheric heat sources and sinks during the GWE[C]Chang C P, Krishnamurt T N, eds. Monsoon Meteorology. Oxford:Oxford University Press, 1987:271-297.

[5] Yeh T-C (Ye D). The thermal structure, convective activity and associated large-scale circulation over the Tibetan plateau during summer[J]. Scientia Atmospheric Sinica(Special issue),1988:1-12. [In Chinese].

[6] Ji G, Zhong Q, Shen Z. Advances in observation and research of the surface heat source over the Qinghai-Xizang plateau[J]. Plateau Meteorology,1989,5:127-132.

[7] Yanai M, Li C, Song Z. Seasonal heating of the Tibetan plateau and its effect on the evolution of the summer monsoon[J]. Journal of Meteorology Society Japan,1992,70:319-351.

[8] Tanaka K, Ishikawa H, Hayashi T, et al. Surface energy budget at Amdo on Tibetan plateau using GAME/Tibet IOP98 data[J]. Journal of Meteorology Society of Japan, 2001,79(1B):505-517.

[9] Tanaka K, Tamagawa I, Ishikawa H, Ma Y, et al. Surface energy budget and closure of the eastern Tibetan plateau during the GAME-Tibet IOP 1998[J]. Journal of Hydrology, 2003,1/4:169-183.

[10] Ma Yaoming, Tsukamoto O, Wu X. Characteristics of energy transfer and micrometeorology in the surface layer of the atmosphere above grassy marshland of the Tibetan plateau[J]. Chinese Journal of Atmospheric Sciences, 2000, 14(5):715-722.

[11] Ma Y, Ishikawa H, Tsukamoto O. Regionalization of surface fluxes over heterogeneous landscape of Tibetan Plateau by using satellite remote sensing data[J]. Journal of Meteorological Society of Japan,2003,81(2):277-293.

[12] Ma Yaomimg, Su Z, Koike T, Yao T, et al. On measuring and remote sensing surface energy partitioning over the Tibetan Plateau from GAME/Tibet to CAMP/Tibet[J]. Physics and Chemistry of the Earth,2003,28:63-74.

[13] Oku Y,Ishikawa H. Estimation of land surface temperature over the Tibetan plateau using GMS data[J]. Journal of Applied Meteorology,2003,43(4):548-561.

[14] Oku Y, Ishikawa H, Su Z. Estimation of land surface energy fluxes over the Tibetan plateau using GMS data[J]. Journal of Applied Meteorology,2006,46(in press).

[15] Tanaka K. PhD Thesis[D]. School of Science, Kyoto University,2005.

[16] Su Z. The Surface Energy Balance SystermSEBS forestim ation of turbu lentheatf lure[sJ].Hydrology and Earth System Science, 2002, 6(1):85 -99.

文章导航

/